

Approaches for the determination and dissemination of absorbed dose to water in ¹⁹²Ir HDR brachytherapy

> J Seuntjens and A Sarfehnia McGill University Montreal, Canada

> > AAPM HDR Ir192 Calibration Symposium

Strain McGill

Acknowledgments & Credits

- Dr. Arman Sarfehnia
- Dr. Kristin Stewart

July 31, 2012

- Dr. Iwan Kawrakow
- Natural Sciences & Engineering Research Council (NSERC)
- Canadian Institute of Health Research (CIHR)

Water calorimetry as a standard for ¹⁹²Ir brachytherapy dosimetry

 In water calorimetry absorbed dose to water is determined by measuring temperature rise in water

$$D_w = c_w \Delta T \ \Pi k_i$$

- 0.23 mK per Gy absorbed dose!
- The devil is in the details:
 - Large source self-heating
 - Sharp dose gradient
 - Need for accurate positioning at small $d_{\rm src-det}$

AAPM HDR Ir192 Calibration Symposium

Were McGill

- Small dose rate at large $d_{\rm src-det}$

```
July 31, 2012
```


Uncertainty	Type A (%)	Type B (%)	DT
Std error on the mean (meas.)	0.43		BI water
C _w		0.03	colorimotor
Absolute temperature		0.01	calorimeter
$(\Delta R/R)/\Delta V$ calibration		0.04	
Thermistor calibration (β)		0.1	uncertainty
k _p		0.05	
kbd		0.3	hudget
k _p		0.1	buuget
kht			
Conv. model (physical data)		0.35	
Simulation data		0.05	
Interval extrapolation		0.01	
Vessel dimension		0.02	
kdd		0.45	
Source-vessel separation		0.85	
Probe position wrt vessel		0.03	
Dwell time		0.01	
Dummy/real source position		0.00	
Predrift linearization		1.5	
Total uncertainty (1σ) (%)		1.90	

Graphite calorimetry as a standard for ¹⁹²Ir brachytherapy dosimetry

 In graphite calorimetry absorbed dose to water is determined by measuring temperature rise in graphite

$$D_w = c_g \Delta T_g \ \Pi k_i$$

- 1.2 mK per Gy absorbed dose (vs. 0.23 mK/Gy in water calorimetry)!
- The devil is in the details:
 - $-\mbox{ A dose conversion graphite to water is built into the correction factors$

AAPM HDR Ir192 Calibration Symposium

- Sharp dose gradients are less of a problem
- Self heating of the source

July 31, 2012

W McGill

Main components of uncertainty	Type A (%)	Type B (%)	Remarks	
1. Relative to the PMMA				
MC correction for PMMA ring not equivalent to water	0.50	0.50	Discussed in text	
			Assuming machine tolerance of	
Mechanical tolerances of the PMMA ring		0.40	±0.001 cm at 1 cm and inverse square law	
PMMA may react with Fricke		0.10	Discussed in text	
PMMA holder and base (scatter 192 Ir)		0.30	Based on the asymmetry of Fig. 3	
Volume averaging		0.23	Evaluated by MC using ring cross section 0.1 mm×0.1 mm	
2. Fricke solution and reader				
Temperature of irradiation and reading		0.47	Assuming 1 °C variation	
Reproducibility of the reader (electronics)	1.70		Estimated using five readings of the same sample	
Extinction coefficient	0.74		Estimated from ICRU 35 data	
C 1000			Resident Alternation and a series	
3. Irradiation				
Source positioning longitudinal		2.50	Discussed in text	
Volume of the solution		0.10	Assuming drift of 0.01 cm height of the Frick solution	
Water phantom too small (not full scatter)		0.01	Based on Ref. 13	
Reproducibility of irradiation time	0.05		QA data	
Transit time and decay	0.05		QA data 7% (k=2	
Square root of the quadratic sum	2.17	2.65		
Combined standard uncertainty	3	43		
Expanded uncertainty $(k=2)$				

Ionization chamber as a standard for ¹⁹²Ir brachytherapy dosimetry

- Use of a ⁶⁰Co absorbed dose to water calibrated ionization chamber
- Using detailed MC methods to extract the chamber calibration coefficient for ¹⁹²Ir in the experimental setup used

$$N_{D,w}^{^{192}\text{Ir}} = N_{D,w}^{^{60}\text{Co}} \left[\frac{(D_w/D_{\text{cav}})_{^{192}\text{Ir}}}{(D_w/D_{\text{cav}})_{^{60}\text{Co}}} \right]_{\text{MC}}$$

Sarfehnia, Kawrakow & Seuntjens (2010) Med Phys 37, 1924 My 31, 2012 APM HDR Ir192 Calibration Symposium

er chamber measurements made in water i	n ¹⁹² Ir brachy	therapy beam.
Uncertainty description	Type A	Type B
$N_{D,w}(^{60}$ Co) calibration		0.7
$[D_{gas}/D_w]_{MC}^{60}$ Co	0.1	
$[D_w/D_{eas}]_{MC}^{192}$ Ir	0.09	
$P_{\rm ion}P_{\rm pol}P_{\rm elec}P_{\rm TP}$		0.17
Measurement reproducibility	0.31	
d _{src-det}		1.2
Dummy/real source		0.00
$d_{\rm src-det}$ renormalization to 55 mm depth		0.25
erall uncertainty on Dose (1-sigma)		46

Conclusions

- Direct absorbed dose rate calibration of ¹⁹²Ir sources brings more simplicity and robustness to HDR brachytherapy reference dosimetry
- Standards laboratories and research centres are actively developing standards
- Uncertainties of typically 2% (k=1) are achievable

AAPM HDR Ir192 Calibration Symposium

• The dissemination of these standards can be based on vitually the same technology as currently available at standards laboratory

Were McGill

Conclusions

- A move from air kerma rate calibrations to absorbed dose rate calibrations is necessary and logical
 - Fits within TG43 concept
 - Can be disseminated using current-day practices
 - Reduces uncertainties at early steps of calibration chain
 - Ultimately improves clinical brachytherapy dosimetry

AAPM HDR Ir192 Calibration Symposium

July 31, 2012

July 31. 2012

🐯 McGill