

**Key Technical Concepts** 

# Dose Calculation

- Calculation: Monte Carlo, Pencil Beam, AAA are models of dose calculation
- **Output:** The output format is standard across models, a dose value for each pixel in the CT dataset.
- **QA:** IMRT QA uses independent tools or software to verify the linac can deliver the dose.

## **Deformable Registration**

- Calculation: BSpline, demons, FEM are models of deformable registration
- Output: The output format is standard across models, a vector displacement associated to each pixel in the CT dataset.
- **QA:** QA should verify independently that the vector displacement correspond to expected anatomical motion.

# Types of Deformable Registration

**BSpline** – Deformation defined on a grid of nodes. Optimization finds optimal nodes displacement.

**Demons** – Matches intensity patterns using partial differential equations.

Finite Elements Models (FEM) – Models organ displacements using physical equations.







# Image Registration – Key Concept

• Image registration is an <u>approximate</u> solution to a problem of registering multiple images together in the absence of ground truth.

Deformable Registration, From a User Perspective























# Deformable Registration QA

Our aim is to make sure that the displacement field found by an algorithm is a reasonable guess.

As for IMRT QA, the solution is case –dependent. Therefore QA for deformable registration will be case-dependent.

Focus is on recognizing algorithm failures, in clinic, on your cases. It is not a general discussion about algorithm A is better than B.

Deformable Registration, From a User Perspective

# **Clinical Workflow**

## Case Study: SBRT Lung Case

Patient had a 4D CT of the abdomen, static CTs with MIP, average and maximum projections also generated from the 4D dataset.

## Segmentation in one phase of the 4D CT

User would segment the tumor in one phase of the 4D CT dataset, such as end expiration

### Deformable registration tracks motion

Deformable registration between the phases of the 4D CT dataset. User segmentation warped with the displacement field to the next phases.













| <br> |
|------|
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |











9







Clinical Example: Integrating PET into Treatment Planning

# Clinical Workflow

## Case Study

PET-CT case for lung case with respiratory motion displacements between PET-CT and CT-sim.

## Deformable algorithm to quantify changes

Either B-Spline or Demons algorithm used to track changes between the CT component of the PET-CT, and the simulation CT

## Then applying on PET for SUV's maping

Displacement field applied on the PET component of PET-CT to bring SUV's into simulation CT

# Sample Case





# BSpline

| <br> |  |  |  |
|------|--|--|--|
| <br> |  |  |  |
|      |  |  |  |







# Quality Assurance

BSpline



Demons



















Clinical Example: Dose Tracking on CBCT



# Mono-Modality Cost Function

Mono-modality – assume a pixel has the same intensity in both datasets to be matched.

Works only CT to CT, or MRI to MRI.



# Multi-Modality Cost Function

Multi-modality – a pixel can change intensities between datasets.

Mix and match : can work between MRI, CT, & CBCT.



# Questions: Mid-Treatment Changes

## Is dose still valid ?

With the anatomical changes, we expect changes in the delivered dose and OAR/PTV shapes and sizes

## Should re-sim ?

Is it worth going through the whole segmentation and planning process ?





# Clinical Workflow

## Deformable Algorithm to quantify changes

Either B-Spline or Demons algorithm used to track changes

## Then estimating dose using voxel tracking Displacement field applied on structures for autosegmentation

Applied on dose for estimating DVHs.















| - |
|---|
|   |
|   |
| _ |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |





















# Interpretation Tool: Volume Changes

Volume changes quantified from the deformation field. Outputs map of regions expanding or contracting.



# Conclusion

- Flexible Tool– Clinically, deformable registration algorithm will give you the power to track and quantify anatomical changes
- Interpretation Tools for QA Inspecting the displacement field directly provides valuable information. This is independent of algorithm or settings selection

## Try it ! You'll like it.