Small-Field Dosimetry: Its Importance In Clinic

Indra J. Das, PhD, FAAPM, FACR, FASTRO Department of Radiation Oncology Indiana University School of Medicine & IU Health Proton Therapy Center Indianapolis, IN, USA

Misadministration	h Media Coverage
Springfield Hospital Reports Radiation Overd February 25, 2010 The New York Times reported on a recent report filed by Cavil- radiating 76 cancer patients during treatment. The majority of th overdose of radiation therapy. A hospital employee improperty c	lose Administered to 76 Cancer Patients
She New York Simes U.S.	Stereotartic therapy delivers radiation in such high dones that usually only one tristment is required. It is commonly used to treat small <u>transmit</u> in the head, which must be firmly
WORD U.L. 19.4 (1960) WUNDER WUNDER TENDONOLIT SELECT IN POLICE EXECUTION Resource Execution Selection III (1990) Data and the execution of the execu	Control Termination and the Section of Section 2014 (Control Termination) The server and management of Section 2014 (Control Termination) The server and management of Section 2014 (Control Termination) The server and the section 2014 (Control Termination) Serve

	TG-155: Small Fields and Non-Equilibrium Condition	on
	Photon Beam Dosimetry	
	Indra J. Das (Chair)	
	Indiana University School of Medicine, Indianapolis, IN 46202	
	Paolo Francescon (Co-chair)	
	Ospedale Di Vicenza, Viale Rodolfi, Vicenza 36100, Italy	
	Anders Ahnesjö	
	Uppsala University & Nucletron Scandinavia AB, 751 47 Uppsala, Sweden	
	Maria M. Aspradakis	
	Department of Radiation Oncology, Kantonsspital Lucerne, Lucerne Switzerland	
	Chee-Wai Cheng	
	Midwest Proton Radiotherapy Institute, Bloomington, IN,	
	George X. Ding	
	Vanderbilt University Medical Center, Nashville, TN 37232	
	Geoffrey S. Ibbott	
	Radiological Physics Center, MD Anderson Cancer Center, Houston, TX 77030	
	Mark Oldham	
	Duke University Medical Center, Durham, NC 27710	
	M. Saiful Huq	
	University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232	
	Chester S. Reft	
	University of Chicago, Chicago, IL 60637	
JDas	s (4) Otto A Sauer	Ψ
PM-2	2013 University of Wuerzburg Wuerzburg Germany	INDIANA UNIVERSET

	Detec	tors	
Detector	Manufacture	• Туре	volume
SFD	Scanditronix	Photon diode	1.7x10 ⁻⁵ cm ³
PFD	Scanditronix	Photon diode	1.9x10 ⁻⁴ cm ³
Exradin A-16	Standard Imaging	Ion chamber	0.007cm ³
Wellhofer-IC4	Scanditronix	Ion chamber	0.40 cm ³
Pinpoint	PTW	Ion chamber	0.015cm ³
0.125cc	PTW	Ion chamber	0.125cm ³
0.3cc	PTW	Ion chamber	0.3 cm ³
0.6cc	PTW	Ion chamber	0.6 cm ³
Diamond	PTW	Diamond	0.003cm ³
Markus	PTW	Parallel plate	0.055cm ³
Edge Detector Other	Sun Nuclear	Diode	10 ⁻⁵ cm ³

F	ran	ces	con	et al	, Me	ed. P	hys	s. 2:	5(4)	, 503	3, 1	998	}	
TABLE III. s _{c.p} n MOSFETs, 1×1 experimental value	neasured v ×1 mm ³ aes have b	vith paralle chips of T seen correct	l-plate mi LD-800 a ted by mea	cro-chambe nd calculat ans of the I	r (filled wi ed by Mon F factor, as	th air and 1 te Carlo B described i	TMS diel EAM cov in Section	lectric lic de. For s n II G.	quid, alterr i _{e p} measu	natively), ra red with th	idiochroi ie ion cl	nic film, amber a	radiogra nd MOS	phic filn FETs, th
Field dismeter	Exradi (wit	n pp IC h air)	Exradi (with	n pp IC TMS)	Radioch	romic film	TLE	0-800	MOS	FETs	Radio	graphic Im	Mon BEA	e Carlo M code
(mm)	Sc.p	20%	5.0	20%	5	20%	5,0	20%	Sep.	20%	See.	20%	Sc.p	20%
4.4 MC	(0.45*) 0.37	<0.8% 0.5%	(0.45*) 0.42	<0.8% 0.5%	0.47	2.4%	0.47	3.7%	(0.48*) 0.53	<1.8% 1.7%	0.46	3.0%	0.46	< 0.5%
6.7 MC	(0.66*) 0.58	<0.8% 0.5%	(0.65*) 0.62	<0.8% 0.5%	0.66	2.7%	0.64	1.9%	(0.65*) 0.71	< 3.6% 3.5%	0.66	2.0%	0.66	< 0.5%
10.5 MC	(0.82*) 0.76	<0.8% 0.5%	(0.81*) 0.78	<0.8% 0.5%	0.81	1.8%	0.80	3.5%	(0.80*) 0.84	<1.7% 1.6%	0.81	2.3%	0.82	< 0.5%
12.7	(0.85*) 0.81	<0.6% 0.4%	(0.85*) 0.83	<0.6% 0.4	0.85	2.5%	0.84	2.8%	(0.84*) 0.86	<1.4% 1.3%	0.85	2.5%	0.84	< 0.5
16.0 MC	(0.87*) 0.86	<0.6% 0.4%	(0.87*) 0.86	<0.6% 0.4%	0.88	2.2%	0.87	3.2%	(0.87*) 0.88	<2.0% 1.9%	0.88	2.5%	0.87	< 0.5
19.0 MC	(0.89*) 0.89	<0.6% 0.4%	(0.89*) 0.89	0.6% 0.4	0.89	2.3%	0.89	2.6%	(0.89*) 0.89	<2.0% 1.9%	0.89	2.5%	0.89	< 0.5
*Experimental va JDas (36) APM-2013	lues divid	ed by the I	^r factor (S	ection II G).	·								ψ

	TABLE VIL F of	the four detectors	for the 3, 7.5, and 1	0 mm collimat
	A16	PWHM.		
	FWHM (real)	Sam off	2.5 mm coll	10 eeu col
Correction Eactor depends on:	t - test trans	1.017	d other	1.000
confection racion depends on.	1.8	1.067	1.017	1.008
That dialates	2.2	1.107	1.020	1.012
Field size	2.6	1.112	1.027	1.010
Source cize (EWIIM)	Pin Point		Free	
Source size (F w Hivi)	FWIRM (mm)	5 mm coll	7.5 mm coll	10 вите со
Dotootor turno	1.4	1.062	1.025	1.017
Delector type	1.8	1.099	1.024	1.013
	2.2	1.110	1.025	1.013
	2.6 Diode	1.124	1.037 F	1.016
	FWHM (mm)	5 mm coll	7.5 mm coll	10 mm or
	1.4	0.953	0.966	0.978
	1.8	0.955	0.966	0.978
	2.2	0.957	0.967	0.978
	2.6	0.940	0.967	0.978
	Diamond		F	
	FWHM (mm)	5 nm cell	7.5 nm coll	10 mm col
	1.4	1.066	1.001	1.001
	1.8	1.093	1.007	1.000
. et al Med Phys 35, 504, 2008	2.2	1,107	1.010	0.099

$k^{f_{\mathrm{clin}},f}_{\mathcal{Q}_{\mathrm{clin}},\mathcal{Q}}$	^{msr} of Linear Accelerators	
Calculation of <i>k</i> accelerators us	$r_{Q_{clin},Q_{mer}}^{f_{clin},f_{mer}}$ for several small detectors and for two lineating Monte Carlo simulations	r
P. Francescon, Department of Me Med. Phys. 38 (12	¹⁰ S. Cora, and N. Satariano dical Physics, ULSS 6 – 36100 Vicenza, Italy 2), 6513-6527, 2011	
FI SEVIER	Corrects lists available at SolVerse ScienceDirect Radiotherapy and Oncology journal homepage: www.thegreenjournal.com	
Experimental small and accelerator com	field 6 MV output ratio analysis for various diode detector binations	
Gavin Cranmer-Sargison ^a	. ^{b.*} , Steve Weston ^{b.e} , Narinder P. Sidhu ^{a.d} , David I. Thwaites ^{b.e}	
Radiotherapy and	Oncology 100 (2011) 429–435	1

	$k^{f_{\mathrm{clin}},f_{\mathrm{r}}}_{\mathcal{Q}_{\mathrm{clin}},\mathcal{Q}_{\mathrm{r}}}$	^{asr} Cy	ber Kn	ife		
	5 m	n	7.5 m	m	10 m	m
Detector	$M_{Q_{ m clin}}^{f_{ m clin}}/M_{Q_{ m msr}}^{f_{ m mar}}$	$k_{\mathcal{Q}_{\mathrm{clin}}\mathcal{Q}_{\mathrm{msr}}}^{f_{\mathrm{clin}}f_{\mathrm{msr}}}$	$M_{Q_{ m clin}}^{f_{ m clin}}/M_{Q_{ m max}}^{f_{ m msr}}$	$k^{f_{\rm clin}f_{\rm mar}}_{\mathcal{Q}_{\rm clin}\cdot\mathcal{Q}_{\rm msr}}$	$M_{\mathcal{Q}_{\mathrm{clin}}}^{f_{\mathrm{clin}}}/M_{\mathcal{Q}_{\mathrm{msr}}}^{f_{\mathrm{msr}}}$	$k_{\mathcal{Q}_{\text{clin}}\mathcal{Q}_{\text{msr}}}^{f_{\text{clin}}f_{\text{msr}}}$
A16	0.626 (15)	1.089 (3)	0.811 (10)	1.018 (3)	0.866 (6)	1.010 (3)
PinPoint	0.620 (17)	1.101 (3)	0.801 (7)	1.024 (3)	0.862 (5)	1.015 (3)
Diode 60008	0.726 (1)	0.943 (3)	0.873 (1)	0.949 (3)	0.912 (1)	0.964 (3)
Diode 60012	0.705 (1)	0.956 (3)	0.847 (2)	0.966 (3)	0.891 (1)	0.978 (3)
EDGE	0.726 (1)	0.948 (3)	0.864 (1)	0.955 (3)	0.906 (1)	0.966 (3)
Alanine	0.544 (8)	1.249 (8)	0.785 (12)	1.059 (4)	0.855 (13)	1.019 (3)
TLD	0.668 (4)		0.809 (6)		0.880 (8)	
EBT films	0.659 (17)		0.811 (16)		0.853 (18)	
Polymer gels ^a	0.702 (21)		0.872 (27)		0.929 (29)	
IJDas (44) AAPM-2013	Pantelis e	t al, Med Pl	hy. 37, 2369-23	79, 2010		UNDIANA ENIVERSITY

Tomotherapy k_{msr} Reference Dosimetry

Reference. 3x10 cm ⁻ , 85 cm SSD, 10 c	Reference:	5x10	cm^2 ,	85	cm	SSD.	. 10	cm
---	------------	------	----------	----	----	------	------	----

cradin A1SL 0.996 1.001 0.997 0.997 (Refs. 5 and 10) cradin A1SL 0.996 1.004 1.000 rW 30006 Farmer 0.993 1.004 0.997 0.995 (Ref. 6) WW 30100 Semillex 0.993 1.002 0.995 0.996 (Ref. 10) rW 31014 PinPoint 0.994 0.997 0.993 0.992 (Ref. 10) rW 31018 microLion (parallel) N/A N/A 0.993 E 2571 Farmer 0.994 1.003 0.997 0.995 (Ref. 6)	Chamber type	$k_{Q,Q_o} \; ({\rm TRS-398})$	$k_{Qmsr}^{fmsr-fref}$	$k_{Q_{\rm max},Q_o}^{f_{\rm max},f_o}$ (MC	$k_{Q_{\rm max},Q_o}^{f_{\rm max},f_o}$ (previous studies)
tradin A12 Farmer 0.996 1.004 1.000 W 3006 Farmer 0.993 1.004 0.997 0.995 (Ref. 6) W 31010 Semiflex 0.993 1.002 0.995 0.996 (Ref. 10) FW 31014 PinPoint 0.994 0.997 0.993 0.992 (Ref. 10) FW 31014 Semiflex 0.994 0.997 0.993 0.992 (Ref. 10) FW 31018 microLion (parallel) N/A N/A 0.993 E 2571 Farmer 0.994 1.003 0.997 0.995 (Ref. 6)	Exradin A1SL	0.996	1.001	0.997	0.997 (Refs. 5 and 10)
TW 3006 Farmer 0.993 1.004 0.997 0.995 (Ref. 6) TW 31010 Semiflex 0.993 1.002 0.995 0.996 (Ref. 10) W 31014 PinPoint 0.994 0.997 0.993 0.992 (Ref. 10) W 31014 PinPoint 0.994 0.997 0.993 0.992 (Ref. 10) TW 31018 microLion (parallel) N/A N/A 0.993 E 2571 Farmer 0.994 1.003 0.997 0.995 (Ref. 6)	Exradin A12 Farmer	0.996	1.004	1.000	
Image: Wight and Semiflex 0.993 1.002 0.995 0.996 (Ref. 10) IW 31014 PinPoint 0.994 0.997 0.993 0.992 (Ref. 10) IW 31018 microLion (parallel) N/A N/A 0.993 1.992 (Ref. 6) E 2571 Farmer 0.994 1.003 0.997 0.995 (Ref. 6)	PTW 30006 Farmer	0.993	1.004	0.997	0.995 (Ref. 6)
IV 31014 PinPoint 0.994 0.997 0.993 0.992 (Ref. 10) IW 31018 microLion (parallel) N/A N/A 0.993 E 2571 Farmer 0.994 1.003 0.997 0.995 (Ref. 6)	PTW 31010 Semiflex	0.993	1.002	0.995	0.996 (Ref. 10)
TW 31018 microLion (parallel) N/A N/A 0.993 E 2571 Farmer 0.994 1.003 0.997 0.995 (Ref. 6)	PTW 31014 PinPoint	0.994	0.997	0.993	0.992 (Ref. 10)
E 2571 Farmer 0.994 1.003 0.997 0.995 (Ref. 6)	PTW 31018 microLion (parallel)) N/A	N/A	0.993	
	NE 2571 Farmer	0.994	1.003	0.997	0.995 (Ref. 6)
	NE 2571 Farmer	0.994	1.003	0.997	0.995 (Ref. 6)

Effect of Inhomogeneity

- Range of secondary electrons
 - Simple scaling based on density M. K. Woo, and J. R. Cunningham, "The valididty of density scaling method in primary electron transport for photon and electron beams," Med. Phys. **17**, 187-194 (1990).
- * Perturbations of the detector

UDas (49

- construction on dose measurements in heterogeneity, Medical Physics 14, 653-656 (1987).
- R. K. Rice, J. L. Hansen, L. M. Chin, B. J. Mijnheer, and B. E. Bjarngard, "The influence of ionization chamber and phantom design on the measurement of lung dose in photon beam," Medical Physics 15, 884-890 (1988).

TG-155 Recommendation

- Dosimetric measurements should be carried out with more than one detector system. *
- Dosimetric measurements should be carried out with more man one detector system. Small volume detector should be used that has minimum energy, does and does rate dependence as discussed in TG-120 and Report No103 should be used. Stereotactic diodes or electron diodes are recommended for field sizes < 1x1 cm2 Micro chambers are best suited for dosimetric measurements for field sizes > 1x1 cm2 however, signal to noise as well as polarity effect should be evaluated. The quality of electrometer and triaxial cable as well as any connector and cables need to be of high quality.

- need to be of high quality. Stereotactic diode with micron size sensitive volume should be the detector of choice for measurements in beams in radiosurgery. The energy spectrum does vary in small fields such as SRS, and IMRT but these changes result in insignificant variations in stopping power ratios when compared to those of the reference field used in dosimetry codes of practice. *
- Hose of the reference held used in dosimetry codes of practice. The treatment planning system performance should be carefully validated when used for the treatment planning incorporating small fields. Although pencil beam and convolution/superposition dose engines are expected to perform well in small field treatment geometries and in almosi homogeneous media, dose engines based on the Monte Carlo method are the most accurate method for modelling dose from small fields in heterogeneous media. The calculation grid size should be significantly smaller (~1/10) compared to the field size. Small field dosimetry should have an independent audit by a different physicist either internal or external like Radiological Physics Center verification.

Summary

- Small volume detector should be used that has minimum energy, dose and dose rate dependence.
- Micro-ion chambers are best suited for small field evaluated.
- Stereotactic diode are ideally suited for radiosurgery beams
- If field size is small compared to detector measurements should be performed at a greater source to surface distance with proper correction.

-Summary

- Energy spectrum does vary in small fields such as SRS, and IMRT, however, its impact is not significant.
- Stopping power ratio in small fields for most ion chambers is relatively same as the reference field.
- Spot check and verification of smaller fields should * be carried out with at least another independent method (TLD, film, MC, etc).
- Stay tuned to newer data and IAEA and AAPM TG * guidelines.

