

"Point Detectors"

- Measure single volumetrically-averaged point
- Scanning provides multiple points

Med. Phys. 38, 1313 (2011)

UCLA Health System

1-D Detector Characteristics

Detector	Measurement Volume (cm ³)	Sensitive Area (cm²)	Diameter (cm)	Thickness (cm)	Effective Point of Measurement (cm)	
Micro- chamber	0.009	0.24	0.6	NA	0.2	
p-type Si diode	0.3	0.49	0.4	0.06	0.6	
Stereotactic diode	NA	0.011	0.45	0.006	0.07	
Pinpoint chamber	0.015	0.010	0.2	NA	0.06	
MOSFET	NA	0.04	NA	0.1	NA	
Diamond	0.0019	0.056/0.073	0.73	0.026	0.1	
Moran, "Dosimetry Metrology" AAPM Summer School Proceedings 2003, System						

DETECTOR	DISADVANTAGES		
Micro-chamber	Poorer resolution than diodes		
p-type Si diode			
Stereotactic diode	Over-respond to low energy photons Martens et al. 2000		
Pinpoint chamber			
MOSFET	Non-linear dose response for <30 cGy Chuang et al 2002		
Diamond	Diamond < resolution than diodes, expensive, Rustgi et al, Laub et		

20% 1.	Measure The dose from x-ray fields of any size.
20%	The beam penumbra. The dose from x-ray fields whose width is at least the same
20%	as the length of the chamber's active volume.
20% ^{4.}	The dose from fields at least 1.5 cm wider than the effective length of the chamber.
20% 5.	Beam profiles for complex IMRT fields.

TLD Chips

• Advantage:

Med. Phys. 38, 1313 (2011)

- Larger number of simultaneous measurements
- Disadvantages
 - Delayed readings
 - Factors required for each chip (Pre-irradiation preparation)
 - Requires automated reader
 - Calibration for each measurement (subset of chips)
- <3% chip-to-chip reproducibility possible

<section-header>

PTW 2D-Array: seven29

- 729 Ionization chambers (vented)
 - $-5 x 5 x 5 mm^{3}$
 - 5 mm spacing

Regarding diode detector arrays:

20%	1.	they can be used to acquire beam profile data for commissioning	
20%	2. 3	they can be used for absolute calibrations. they are convenient for routine quality assurance, but care needs	to be
20%	4	taken when interpreting the results.	
20%	4. 5.	they have no place in modern radiation therapy duality assurance they come in only one general shape; flat and therefore have limit	e. ited
20%		utility in arc-based quality assurance.	
Med. Phy	s. 38 , 1	1313 (2011) UCLA Health	10 / m

IMRT QA Tools

EPIDS - Advantages

- Many centers have installed EPIDs for patient localization
 - Logical extension to investigate dosimetric applications
- Mounted to linear accelerator known geometry with respect to the beam
 - Detector sag must be accounted for at different gantry angles
 - Positioning reproducibility important
- Real time digital evaluation
 - No processor, data acquisition takes less time

Med. Pl Jean Moran, U Michigan

UCLA Health System

IMRT QA Tools

EPIDS - Challenges

- However, EPIDs were primarily designed for patient localization
 High resolution, good contrast images
 - Additional dose to the patient should be minimized
- The conversion of imager response to dose is complex
 - Imaging system dependent
- Other problems
 - Ghosting
 - Lag

Med. Phys. 38, 1313 (2011)

Jean Moran, U Michigan

QA Software: Sun Nuclear

Translation
 Betatlen

alth System

Med. Phys. 38, 1313 (2011)

QA Software: MUcheck Getwell Cancer Center Varian 2100E Getwell Getwell Getwell Pat. ID A 16 MV Phot 1b rpo 158 ¥ 11.9 Refc-- Depth ->Eff(cm) EqSq@D Off Asia Radial Dist v 0 M 2 -/---Tool Wed C M TPS Dose 31.03 c5y Segment Analyzer Calc Dose Clear Modifiers Calc'd Dose 30.92 cGy Show Composite Calc Next Print New Patient Save 89.32 ×0# **0.36** X2 Y1 Y2 SSD Depth EH Depth Seg # TPS Dose Dose TPS HU MU % DHF 5.5 5.7 6.2 62.29 17.71 17.71 320 31 30.92 89 89.3 -0.36 Bea... X1 Total 31 30.92 -0.26

Med. Phys. 38, 1313 (2011)

OCLA HIGHIN System

Dose Evaluations and Comparisons

- Each system has tools to evaluate dose distributions
- Effective use of the tools requires understanding of how the tools work
 - Point comparisons
 - Superimposed dose distributions
 - Dose difference
 - Distance-to-agreement
 - "Composite failure analysis"

Med. Phys. 38, 1313 (2011)

Steep Dose Gradients provide a challenge for dose distribution comparisons because

20%	1.	Slight shifts between the two compared doses cause the dose differences to appear smaller than they actually are.
20%	2.	Rotations between the two compared doses have no effect in steep
20%	3.	The selected dose difference criteria have a big impact on the
20%	4.	dose differences in steep dose gradients. The dose difference is overly sensitive in steep dose gradient
<mark>20%</mark>	5.	regions. The gradients occur only in the centers of tumors.
Med. Phys	s. 38 , 1	313 (2011) UCLA Health

What is γ ?

- γ is the rescaled Euclidean distance between an evaluated distribution and each point in a reference distribution
- Each spatial and dose axis is normalized by a criterion
- Renormalized "distance" defaults to distance to agreement and dose difference in shallow and steep dose gradient regions, respectively.

Med. Phys. 38, 1313 (2011)

The γ dose comparison tool requires 20% 1. Only one dose distribution and two criteria. 20% 2. Two dose distributions and one criterion. 20% 2. Two dose distributions measured or calculated from different source types (e.g. film versus calculation). 20% 4. Two criteria: any combination of dose difference and DTA. 20% 5. Two criteria: one dose difference and one DTA.

Spatial Resolution

• Reference distribution can be a single point

• γ is calculated independently for each

• Evaluated distribution 1D-3D

reference point

• Resolution challenge

Correct Answer: 5 • Source TG 120

Med. Phys. 38, 1313 (2011)

UCLA Health System

Med. Phys. **38**, 1313 (2011)

Med. Phys. 38, 1313 (2011)

UCLA Health System

UCLA Health

Why Noise Impacts **y**

- Ideal case with a constant 5% difference between the point to be evaluated and the target image surface.
- With no noise a 3mm, 3% gamma will evaluate to 1.667 for this situation (fail).

- If we add Gaussian noise with 0 mean and 3.16 standard deviation we see that the ellipsoid is penetrated.
- Anywhere the ellipsoid is penetrated $\gamma \leq 1$ (pass)

- Evaluated: Typically underestimates γ (γ is the minimum distance!)
- Reference: Noise is reflected in γ

UCLA Health System

Clinical Issues Spatial resolution in evaluated distribution is important unless some type of interpolation is used Dose difference criterion is intuitive

- DTA criterion
 - Spatial uncertainty (measurements)
 - Spatial allowance (margins)
- How do we interpret γ failures?

Med. Phys. 38, 1313 (2011)

Med. Phys. 38, 1313 (2011)

UCLA Health System

γ failures

- 100% passing would be nice!
- Not practical
- Caution: γ tool should be used as an indicator of problems, not as a single indicator of plan quality
- Passing Rate (Nelms): passing rate not correlated with clinically relevant errors

Med. Phys. 38, 1313 (2011)

Criteria

- Spatially varying criteria (both dd and DTA
 - Anatomical (target versus muscle)
 - Dose (high versus low)
- This may be very useful with new backprojected and independently calculated 3D dose distributions
- Medically appropriate criteria will make interpretation of γ more straightforward

Med. Phys. 38, 1313 (2011)

UCLA Health System

γ Histograms

- γ histograms provide more information than just pass/fail percentages
- Maximum γ indicates magnitude of agreement
- Mean $\boldsymbol{\gamma}$ may also indicate relative quality of plan

Med. Phys. 38, 1313 (2011)

2D versus 3D

- Gradients exist in all 3 dimensions
- 2D γ provides less information than full 3D γ
- If measurement is 2D, calculation is typically 3D, so no reason not to use 3D γ (3D γ will always provide smaller values than 2D)

Med. Phys. 38, 1313 (2011)

UCLA Health System

Modern IMRT QA:

 20%
 1. Is adequate by iteslf to guarantee safe IMRT treat

 20%
 2. Will identify most major sources of error.

 20%
 3. Catches many but not most errors.

 20%
 4. Is accurate, but inadequate.

 20%
 5. Does not play a significant role in improving radi

 20%
 5. Does not play a significant role in improving radi

 20%
 6. Herapy safety.

