

- 1. Knowledge of acceptance testing and commissioning: We will discuss what should be done and the steps on how to do acceptance testing and commissioning
- 2. Methodology of quality assurance: We will discuss what quality assurance procedures, including machine specific and patient specific QAs as well as end-to-end tests should planned, why they are needed, and how to perform these procedures effectively

"The DVHs or subsequently derived biological scores depend on the **total number of strata**, which is defined as the product of the number of beams and the intensity levels within each beam. As the number of beams increases, the number of intensity levels required to obtain optimal dose distribution should be reduced."

Yu, CX: Intensity-modulated arc therapy with dynamic multileaf collimation: an alternative to tomotherapy. Phys. Med. Biol., 40: 1435-49, 1995

What matters is the total number of shape changes!

VMAT: The Field Size

Limitation Problem

MLC field size limitations affect monitor unit efficiency and delivery time for SG-IMRT and VMAT in different ways

- The limited reach of some MLCs can decrease SG-IMRT efficiency by approximately a factor of 2 due to field splitting
- Rotating the MLC by 45 degrees for VMAT can improve monitor unit efficiency
- SG-IMRT and VMAT should be compared for both large and small-field situations

Current VMAT and QA Options

- Some Existing Planning Systems
 - Eclipse (Varian)
 - ERGO++/Monaco (Elekta)
 - Pinnacle SmartArc (Philips)
 - Prowess (Prowess)
- Some Existing Delivery Systems
 - VMAT/RapidArc (Varian)
 - VMAT (Elekta)
- Some Existing QA Systems
 - Film or film equivalent
 - 2-D ion chamber/diode array (i.e., Matrixx, Octavius, Mapcheck, ...)
 - 3-D diode matrix (Delta 4, ArcChecker, Octavius, Gel/Presage,...)
 - Some of 3-D devices could be potentially used for 4-D measurement

Acceptance Testing Should

Include the Following

- Machine readiness
 - Verification of installation against items included in the purchase order (specifications)
 - Inspections of safety and quality of installation and components
- VMAT specific performance testing
 - Testing of functionality of each component and system performance against specifications
- End-to-end testing
 - Dry-runs for a few test cases from simulation to delivery

Commissioning Related to VMAT

1. Mechanical-specific tests*

- a. MLC position test static gantry
- b. MLC position test rotating gantry
- c. MLC error detection test during rotation

2. Dosimetry-specific tests

- Dose profile test at different gantry positions
- a. MLC dosimetry test at different gantry positions
- b. MLC dosimetry test with changing gantry speed and dose rate
- c. MLC dosimetry test with changing leaf speed during rotation

3. Interruption/resumption test

4. End-to-end tests

- a. Data transfer
- b. Patient specific
- * The numbers and letters shown on this slide are used to identify the testing procedures on the following slides

Acceptance Testing and Commissioning

- Commissioning for VMAT follows two early reports:
 - Ling C, et al "Commissioning and quality assurance of RapidArc radiotherapy delivery system," *Int J Radiat Oncol Biol Phys.* 72, 575-81 (2008)
 - Bedford and Warrington, "Commissioning of volumetric modulated arc therapy," *Int J Radiat Oncol Biol Phys.* 73, 537-45 (2009)

General IMRT Guidance Document:

 Ezzell, G. A., J. M. Galvin, et al. "Guidance document on delivery, treatment planning, and clinical implementation of IMRT: report of the IMRT Subcommittee of the AAPM Radiation Therapy Committee." <u>Med Phys</u> 30, 2089-115 (2003)

Published Commissioning

References

Ling et al paper

Varian accelerator was used for testing
Procedures tend to be specific for this equipment
Must have good knowledge of the use of Log Files
Equipment needed is relatively simple

Bedford et al paper

•Elekta accelerator was used for testing

•Procedures tend to be specific for this equipment

•Equipment used is complex and expensive

•Possible to adapt testing to simpler equipment

	Sample Gantry	AT 2b: o Speed a	dMLC D and Dos	ose vs se-rate
Δ MU/ Δt	Δ θ (degree)	<mark>∆θ/∆t</mark> (degree/s)	Ανε Δ	Measurement ROIs (same MUs)
111	90	5.54	1.1	
222	45	5.54	0.5	
333	30	5.54	0.0	- K
443	22.5	5.54	0.1	
554	18	5.54	-0.2	
600	15	5.00	-0.5	
600	12.9	4.30	-1.1	
		_		Duke University

		A	ternat	ive 2	2b&20	c: dN	<u>/ILC</u>		
		Dosi	imetrv	for (Ganti	v Po	ositio	on	
• A tc w	sliding test e idth)	g windo ffect of	ow (2x20c gravity o	m dyna n MLC	mic slit) moveme	at different (lea	erent g f speed	antry ang I/aperture	les
• Te	est with	n both i	uniform a	nd varia	able leaf	speed			
• T	olerand	e: ±1%	% intensit	y chanc	e relativ	ve to q	antry z	ero	
• Te	olerand	:e: ±3%	% compar	ed mea	sured to	o calcu	lated d	oses	
			• • • • • •						
Gantry angle (°)	Collimator angle (°)	Motion	Measured calculated dose	Measured static dose	Gantry angle (°)	Collimator angle (°)	Motion	Measured calculated dose	Measured static dose
0	0	$X1 \rightarrow X2^*$	1.12	0.985	0	0	$X1 \rightarrow X2^*$	1.20	0.984
0	0	$X2 \rightarrow X1$	1.12	0.984	0	0	$X2 \rightarrow X1$	1.20	0.985
270	0	$X1 \rightarrow X2$	1.12	0.983	270	0	$X1 \rightarrow X2$	1.19	0.976
270	0	$\Lambda 2 \rightarrow \Lambda 1$ $\chi 1 \rightarrow \chi 2$	1.11	0.972	270	0	$\Lambda 2 \rightarrow \Lambda 1$ $\chi 1 \rightarrow \chi 2$	1.19	0.978
270	90	$X_2 \rightarrow X_1$	1.12	0.982	270	90	$X_1 \rightarrow X_2$ $X_2 \rightarrow X_1$	1.19	0.978
An a	perture	moving	at uniform s	speed	An a	perture r	moving a	nt variable s et al Red J 2	peed

Sample VMAT COM: Using Benchmark Data

Compare IMRT vs VMAT with TG 119 Test Set

- Treatment Planning System Pinnacle
- Measurement Phantom ("cheese phantom," TomoTherapy)
- Delivery System Elekta Infinity System
- G.M. Mancuso, J.D. Fontenot, J.P. Gibbons, B.C. Parker, "Comparison of action levels for patientspecific quality assurance of intensity modulated radiation therapy and volumetric modulated arc therapy treatments," Med. Phys. 39, 4378-4385 (2012).
- G. A. Ezzell, J. W. Burmeister, N. Dogan, T. J. LoSasso, J. G. Mechalakos, D. Mihailidis, A. Molineu, J. R. Palta, C. R. Ramsey, B. J. Salter, J. Shi, P. Xia, N. J. Yue, and Y. Xiao, "IMRT Commissioning: Multiple Institution Planning and Dosimetry Comparisons, a Report from AAPM Task Group 119," Med.Phys. 36, 5359-5373 (2009).

		то	G-119	This	work
Parameter	Plan goal (cGy)	Mean (cGy)	Std dev (cGy)	IMRT (cGy)	VMAT (cGy)
		Multitarg	get		
Central target D ₉₉	>5000	4955	162	4857	5132
Central target D ₁₀	<5300	5455	173	5475	5532
Superior target D99	>2500	2516	85	2543	2648
Superior target D ₁₀	<3500	3412	304	3266	3410
Inferior target D ₉₉	>1250	1407	185	1277	1255
Inferior target D ₁₀	<2500	2418	272	2541	2398
		Prostate	e		
Prostate D ₉₅	>7560	7566	21	7609	7560
Prostate D ₅	<8300	8143	156	7784	7813
Rectum D ₃₀	<7000	6536	297	6846	6830
Rectum D ₁₀	<7500	7303	150	7464	7473
Bladder D ₃₀	<7000	4394	878	4868	4627
Bladder D ₁₀	<7500	6269	815	6930	6941
		Head and r	neck		
PTV D ₉₀	>5000	5028	58	5203	5147
PTV D ₉₉	>4650	4704	52	4763	4755
PTV D ₂₀	<5500	5299	93	5385	5439
Cord maximum	<4000	3741	250	3940	3951
Left parotid D ₅₀	<2000	1798	184	1875	1850
Right parotid D ₅₀	<2000	1798	184	1833	1910
		C-shape	e		
PTV D ₉₅	> 5000	5010	17	5001	5007
PTV D ₁₀	<5500	5440	52	5330	5463
Core D ₁₀	<2500	2200	314	2489	2163

	IMI	RT	VM	AT
Location	TPS dose (cGy)	% diff	TPS dose (cGy)	% diff
		Multitarget		
Central target	214.7	-0.40 ± 0.06	218.4	0.31 ± 0.05
Superior target	119.6	-0.55 ± 0.19	108.1	-0.03 ± 0.05
Inferior target	65.4	-2.82 ± 0.10	56.0	-1.15 ± 0.05
		Prostate		
PTV	184.0	-0.75 ± 0.06	185.4	-0.60 ± 0.07
Rectum	137.4	-1.66 ± 0.13	146.8	-1.53 ± 0.07
Bladder	136.4	1.34 ± 0.20	134.4	-2.78 ± 0.20
		Head and neck		
PTV	212.8	-2.85 ± 0.00	206.5	-4.24 ± 0.06
Spinal cord	126.9	-1.42 ± 0.30	135.8	-4.20 ± 0.19
		C-shape		
Central core	54.9	-0.87 ± 0.07	48.1	-2.04 ± 0.06
Outer target	208.4	1.82 ± 0.06	207.5	-2.76 ± 0.15
Average		-0.82 ± 0.48		-1.89 ± 0.50
Averagel		1.45 ± 0.27		1.96 ± 0.48

	% points with	1γ3%,3 mm < 1	% points with $\gamma_{2\%,2 \text{ mm}} < 1$		
Film plane	IMRT	VMAT	IMRT	VMAT	
		Multitarget			
Coronal	99.2 ± 0.3	99.0 ± 0.1	98.2 ± 0.4	97.1 ± 0.1	
Sagittal	98.7 ± 0.3	99.0 ± 0.2	98.0 ± 0.2	97.5 ± 0.3	
		Prostate			
Coronal	100 ± 0.0	100 ± 0.0	99.4 ± 0.2	99.8 ± 0.1	
Sagittal	98.9 ± 0.2	100 ± 0.0	98.5 ± 0.4	100 ± 0.0	
		Head and neck			
Coronal	99.1 ± 0.1	97.7 ± 0.2	96.0 ± 0.3	93.8 ± 0.1	
Sagittal	96.5 ± 0.3	98.3 ± 0.1	93.9 ± 0.2	95.8 ± 0.1	
		C-shape			
Coronal	99.3 ± 0.2	99.9 ± 0.0	98.2 ± 0.5	99.2 ± 0.1	
Sagittal	99.3 ± 0.2	98.6 ± 0.5	98.2 ± 0.4	96.4 ± 0.7	
Average	98.9 ± 0.4	99.1 ± 0.3	97.6 ± 0.6	97.5 ± 0.8	

Method	Preparation	Delivery	Analysi
Ion chamber: first	15	15	5
Film: first	15	20	20
Ion chamber array: first	15	15	5
Ion chamber: additional	15	7	5
Film: additional	15	10	10
Ion chamber array: additional	15	7	5
IC + 2 film + 2 ICA	75	67	45
IC + 2 ICA	45	37	15
IC + ICA	30	30	10

Organ and patient motion could cause unexpected dose deviations:

- Simultaneous imaging and delivery
- Real-time 4D imaging for target verification
- Interplay effect
- Breath-hold technique

