Quality Assurance for Volumetric Image-Guided Radiation Therapy

Jean-Pierre Bissonnette, Ph.D., MCCPM Princess Margaret Hospital, Toronto, Canada

Disclosures

- Work supported, in part, by Elekta Oncology Systems
- Commercial Interest in Penta-Guide Phantom, Modus Medical Inc.
- Chair, AAPM TG-179

Acknowledgement

• Katja Langen, Doug Moseley, Jon Kruse

Learning Objectives

- Justify the utilization of IG systems to QA clinical processes.
- Discuss the basic physics and technology of volumetric image guidance systems, focusing on kV and MV cone-beam CT and megavotlage CT (TomoTherapy) systems.
- Discuss the preparation of a comprehensive QA program for IGRT systems adapted to their own clinical context.

What is the most likely cause of severe image guidance errors? 20% 1. Poor image resolution 20% 2. Radiation damage to the flat panel 20% 3. Insufficient disk space to store images 20% 4. A mis-calibration of the geometry

5. Excessive dose to the patient

10

Image-Guided Radiation Therapy

- Frequent imaging during a course of treatment as used to direct radiation therapy
- It is **distinct** from the use of imaging to enhance target and organ delineation in the planning of radiation therapy.

Justification for IGRT

- Accuracy:
 - verify target location (QA)

- Precision:
 - tailor PTV margins (patient-specific)

- Adaptation to on-treatment changes
 - Correct & moderate setup errors
 - Assess anatomical changes
 - Re-planning ("naïve" or explicit)

QA for IGRT Systems • Published AAPM reports - TG-58 (Portal Imaging) - TG-104 (Image-guidance systems) - TG-142 (General accelerator QA) - TG-148 (Tomotherapy) - TG-135 (Robotic Radiosurgery) - TG-154 (Ultrasound) - TG-179 (CT-based IGRT)

Why is the image quality of a kV-CBCT worse than for a regular CT scanner?				
20%	1.	The flat panel pixels are too large		
20%	2.	Contamination x rays from the waveguide		
20%	3.	Inconsistent x-ray tube output		
20%	4.	Radiation damage to the flat panel		
20%	5.	Scatter		

Megavoltage CBCT

- Uses treatment beam (6MV).
- Imaging/Tx share isocentre.
- Very low dose-rate (0.005 MU/deg)
 - beam-pulse triggered image acquisition
- a-Si Panel EPID optimized for MV
- Typical acquisition time ~ 2 min
- Typical dose: 2 to 9 cGy
- "Immune" from electron density artifacts

Courtesy of J. Pouliot

Cone-Beam Computed Tomography

Features

- soft-tissue contrast
- patient imaged in the treatment position
- 3-D isotropic spatial resolution
- geometrically precise
- calibrated to linac treatment iso-centre

Limitations

- NOT fast acquisition
 - 0.5 2 minutes
- NOT diagnostic quality
 - Truncation artifacts
 - Image lag/ghosting
 - No scatter rejection

Coincidence with MV isocentre

- Place object *directly* at radiation isocentre
- Calibrate IGRT device against that
 Calibrate IGRT device against that
 - + "Burn" beam isocentre directly into the image dataset
 - + Highly accurate (< 300 μm)
 Takes 2 hours to perform

Indirect method

- Place object at surrogate of radiation isocentre (i.e., lasers)
 - object
 - Can calibrate daily
 Subject to laser imprecision and drift

Coincidence with MV isocentre

- Direct method examples:
 - Elekta XVI CBCT
 - Siemens MVCT

_			
_			
_			
_	 		
_			
_			
_			
-			
_			
_			
-			
_			
_			
_			
_			

Coincidence with MV isocentre

- Indirect method (phantom aligned with surrogate of radiation isocentre) example
 - Varian OBI

Isocentre over gantry rotation

- Tolerance
 - Displacement < 2mm</p>
- Preparation
 - Phantom with a center marker
 - -0° , 90°, 180°, and 270°

Courtesy of S. Yoo

What is the aim of end-to-end testing? 20% 1. Verify the imaging dose 20% 2. Tests the IGRT and treatment workflow 20% 3. Tests the gating system performance 20% 4. Assesses the accuracy of the room lasers 20% 5. Checks image quality on a daily basis

CBCT Daily Coincidence QC

- Align phantom with lasers
- Acquire portal images (AP & Lat) & assess central axis
- Acquire CBCT
- Difference between predicted couch displacements (MV & kV) should be < 2 mm

CBCT Daily Geometry QC

- Warms up the tube
- Checks for sufficient disk space
- Tests remote-controlled couch correction
- Can be well-integrated in QC performed by therapists

4	1
1	~

TG-142 recommended tolerances for daily QA

Procedure	Non-SRS/SBRT	SRS/SBRT
Isocentre coincidence	≤ 2 mm	≤1 mm
Positioning/ repositioning	≤1 mm	≤1 mm

TG-179 and TG-104 recommended tolerances for daily QA

, ,			
Procedure	Everyone!		
Isocentre coincidence	≤ 2 mm		
Positioning/	≤ 2 mm		
repositioning			

- Tolerances derived from long-term QC test results
- Rely on more accurate/precise geometric calibration performed *monthly*
 - Long-term trends in calibration results show highly stable accuracy

What does a flex-map represent? 20% 1. Motion of the isocentre vs gantry angle 20% 2. Registration offset of portal images vs CBC 20% 3. Spatial resolution vs the SSD 20% 4. Portal imager collides with the couch 20% 5. Mechanical isocentre vs OBI isocentre

CBCT Image quality

Follow the same principles as for conventional CT scanners (AAPM report #74)

- Scale
- Spatial resolution (MTF)
- Noise
- Uniformity
- Signal Linearity (CT numbers)

MV CBCT: Image Quality phantom

- 20 cm diameter
- Four 2-cm sections:
- → 1 solid water section for noise and uniformity
- → 2 sections with inserts for contrast resolution
- → 1 section with bar groups for spatial resolution
- 12 beads for position accuracy

Image quality: tolerances (TG-142, TG-179)

Scale ± 1 mm
Spatial resolution (MTF) 2-3 mm
Noise Baseline
Uniformity Baseline
Signal Linearity Baseline
CT numbers Baseline

QA for helical tomotherapy Formal guidance: TG-148

-includes QA of MVCT

-Daily, Monthly, Quarterly
Annual

Langen et al.: Med Phys, 37 (9), 4817-4853, 2010

TG-148 recommendation

Daily non-SRS SRS

Imaging/Laser

Coordinate coincidence $\leq 2 \text{ mm} \leq 1 \text{mm}$

Image registration/alignment: ≤ 1mm

TG-148 recommendation

Monthly non-SRS SRS

Geometric distortions ≤ 2 mm ≤ 1mm

Contrast/ Uniformity/ Noise Baseline

Spatial resolution 1.6 mm object

Spatial resolution

Resolution of high contrast object:

Tolerance: 1.6 mm object should be resolved

TG-148 recommendation

Monthly (if MVCT is used for dose calc.)

Uniformity 25 HU

HU (water) within 30 HU of

baseline

HU (lung/bone) within 50 HU of

baseline

	Monthly M	Test Consistency HU Noise Uniformity Spatial resolution Reconstruction - takes 1 MVCT scan	
	TC 140 rocom	mandation	
	TG-148 recommendation <u>Quarterly</u>		
<u>Quarterry</u>		<u></u>	-
	Dose consi	stent with baseline	
			·
			1
	TG-148 recom	mendation	
	<u>Annual</u>	non-SRS SRS	
	Imaging/treatment/laser		
	coordinate coincidence	2 mm 1 mm	
	↓ Dosimetry end-to-end test	t	

(test locations of dose distribution in phantom)

Name one advantage of MV-CBCT that facilitates QC testing 20% 1. Image quality is better than kV-CBCT 20% 2. MV-CBCT isocentre = treatment isocentre 20% 3. Imaging dose is less than kV-CBCT 20% 4. HU_{MV-CBCT} = HU_{diagnostic CT} 20% 5. Better image quality than Tomotherapy

Validity of results depend on how closely commissioning procedures are followed Many settings aren't interlocked Scatter conditions have a large influence Vulnerable to after hours work Keep an eye on service guys and graduate students When in doubt, refresh the calibration

Operation Issues: Improving **Treatment Quality & Efficacy** • Effect of immobilisation Optimal image frequency Process Maps The Big Picture • An decision taken during simulation has repercussions at the treatment unit • Technology is more complicated • Physicists, therapists, and radiation oncologists have different perceptions of quality and safety • We all want to do well • How do we integrate new tech and processes? **Process Thinking** Process A set of interrelated work activities characterized by a set of specific inputs and value added tasks that make up a procedure for a set of specific outputs. Process Map

A picture of the separate steps of a process in sequential order. Shows activities, decision points, cycle loops, inputs and outputs, delays, etc.

IGRT and Safety

- We know we can detect and correct geometric errors with IGRT
- How big of an issue is it, really? Were positioning errors a big deal?

IGRT Transforms Radiation Therapy

- New information is revealed
- Lead the way towards adaptive therapy on a daily basis
 - Account for changes in patient positioning
 - Ensure tumor is in the fields each day
- Safety improved
 - Organs at risk are kept out of the fields
 - Use PRV margins when planning cases

Conclusion

- IGRT is much about ensuring safety and high quality radiotherapy
 - Ensure tumor & OAR are where they are supposed to be
 - Bridge quality meanings: therapists, physicists, radiation oncologists
- New information is revealed
 - Deal with deformation
 - Enable adaptation of therapy
- Integrate into our routine practice
 - Develop process thinking to facilitate best decision