

Medical School

Research Collaboration with GE Global Research

Tomosynthesis

• 3-D method of imaging that reduces or eliminates tissue overlap problem of conventional x-ray imaging.

- Involves acquisition of multiple projections over a limited angle.
- Reconstruction produces many image slices.
- Reference:

Digital x-ray tomosynthesis: Current state of the art and clinical potential James T. Dobbins III & Devon J. Godfrey Phys Med Biol 48 (2003) R65-R106

- Is a refinement of conventional tomography.
- Generates an arbitrary number of in-focus planes from a series of projection radiographs taken during a single motion (sweep) of the x-ray tube.
- Unlike conventional tomography, the various in-focus planes are produced without additional exposure.
- Can be considered "limited angle" CT.

 1935 paper [Ned. Tijdschr. Geneesk 51 5852-6]:
 "Seriescopy, a Roentgenographic method which allows an infinite number of successive parallel planes of the test object to be considered separately" (translated) = TOMOSYNTHESIS

Other Inventor: Julius Kaufman, MD Brooklyn, NY

- Published 4 papers on "planeography" (1st in 1936)
- Stated with this method, "it is possible to demonstrate any plane in space, parallel to the plane of the plate from two (or more) roentgenograms (films) properly taken."
- Stressed localization and depth measurement capabilities of method.

Reconstruction Methods

- Shift and Add = unfiltered backprojection. Brings inplane objects in focus while blurring out-of-plane features.
- Tuned Aperture CT (Webber et al) = shift & add with fiducial markers. Allows images to be acquired at random angles & orientations & reconstructed in arbitrary planes.
- Matrix Inversion (MITS) (Dobbins et al) Uses linear algebra to solve/correct for out-of-plane blur using known blurring functions of all other planes when a given plane is reconstructed.

Reconstruction Methods Cont'd

- Filtered Back Projection Low-pass filters used in spatial frequency domain to compensate for incomplete &/or nonuniform sampling of tomo acquisition in spatial domain & suppress high freq's.
- Algebraic Reconstruction Techniques (ART) Iterative solution to set of linear equations ray by ray. Variants: SART, SIRT, and ILST
- Statistical Reconstruction Maximum Likelihood (ML) – maximize probability of generating projections given a 3-D model of attenuation coefficients.
 Variants: ML-EM, ML-convex

Today's DBT Units

- Flat Panel Detector, Cone Beam:
 - GE Hologic IMS Giotto Planmed Siemens
- Photon Counting Strip Detectors, Multiple Slot Beam: Philips/Sectra

XCounter

FDA Approval

Full Field Digital Breast Tomosynthesis

2011 - Hologic Selenia Dimensions (February 11, 2011)

First published paper on the Hologic System: BR Ren, J Stein, A Smith et al, Design and performance of the prototype full field breast tomosynthesis system with selenium based flat panel detector, Medical Imaging 2005: Physics of Medical Imaging, Pts 1 and 2 SPIE, Volume: 5745 Pages: 550-561 (2005)

Cna	racteris	Stics of	Current	Breast	Iomo	Onits
Unit	Tomo angle	# views	pixel pitch	2x2 binning	detector	scan tim
GE Gen2	(60°)	21	100 micron	no	Csl-a-Si	7.5 sec
GE DS	40°	15	100 micron	no	CsI-a-Si	11-20 se
GE Essentia	al 25º	(9)	100 micron	no	Csl-a-Si	7 sec
IMS Giotto	o 40º	11-13	85 micron	yes & no	a-Se	12 sec
(Dexela)						
Hologic	15°	15	70 micron	yes	a-Se	3.7 sec
Planmed	30°	15	85 micron	no	a-Se	20 sec
Sectra (Philips)	(11º)	21	(50 micron)	no	silicon	3-10 se
Siemens	50°	(11-49)	85 micron	yes &no	a-Se	12-40 se
XCounter	24°	(48)	60 micron	no	gas	12-18 se

DBT image quality depends on:

- Imaging geometry & accuracy of that geometry Tomo angle (range from ~11° to 60°) Angular increment (~ 1° to 3° or variable)
- X-ray tube & detector motion during exposure Continuous Motion vs. Step and Shoot
- 3) Total sweep time (breast motion)
- 4) X-ray spectrum (anode, filter, kVp) (subject contrast)
- 5) mAs (quantum noise)
- 6) Detector DQE (contrast, resolution & noise)
- 7) Detector lag (artifacts, blur)
- 8) Detector pixel size, interspace, binning of pixels
- 9) Reconstruction algorithm (FBP vs. iterative vs. matrix inv.)
- 10) Image processing (e.g. edge & contrast enhancement)
- 11) Image display (slice "thickness", slab vs. slice)
- 12) Artifact & scatter corrections

Examples of some factors that affect DBT image quality

A) Effect of Imaging Geometry

University of Michigan Studies:

The effects of total acquisition angle and angular increment on the detection of :

- 1) masses and perception of contrast-detail test objects
- 2) microcalcification clusters

in digital breast tomosynthesis

Authors

Heang-Ping Chan, PhD^a Mitch Goodsitt, PhD^a Andrea Schmitz^b Scott Zelakiewicz, PhD^b Yao Lu, PhD^a Sontash Telang, BS^a Paul Carson, PhD^a Mark Helvie, MD^a Chintana Paramagul, MD^a Colleen Neal, MD^a Marilyn A. Roubidoux, MD^a Mitra Noroozian, MD^a Alexis V. Nees, MD^a

^aUniversity of Michigan ^bGE Global Research

Advanced Mode – DBT System

- GE prototype
- Step and shoot design
 X-ray source and detector stationary during exposure
- Variable tomographic angle
- Variable increments
- Variable # of projections

Advanced Mode – DBT System • a:Si/Csl flat panel detector • 0.1 mm x 0.1 mm pixel pitch Breast phantom

Modular Breast Phantom

- Six 1-cm-thick slabs of breasttissue-equivalent material (~ 50% fibroglandular/50% adipose) (CIRS, Inc.)
- Heterogeneous structured background
- Heterogeneous & homogeneous CD slabs
- Slabs arranged in different orders to form
 5-cm-thick phantoms
- 4 different phantoms for current study

Simulated Microcalcification Clusters

- Calcium carbonate specks
- 3 size ranges:

⊳	Subtle:	0.15 – 0.18 mm	28 clusters
⊳	Average:	0.18 – 0.25 mm	29 clusters
⊳	Obvious:	0.25 – 0.30 mm	24 clusters

Simulated clusters sandwiched between slabs in random positions at different depths

Summary CNRs for all disks <u>heterogeneous</u> CD phantom, all arrangements										
Labels	16d 17p	30d 11p	60d 21p	40d 11p	60d 21pv	60d 17pv	40d 13pv	40d 15pv	40d 15pv2	24d 9pv
Median	0.83	1.21	(1.35)	1.23	1.25	(1.46)	1.14	1.18	1.12	(1.11)
mean	0.87	1.17	1.48	1.30	1.40	1.51	1.20	1.25	1.18	1.07
Stdev	Stdev 0.85 0.94 0.87 0.97 0.91 0.86 0.87 0.89 0.86 0.91									
Statistically significant differences (paired t-test) for multiple comparisons (p<0.05/45 = 0.0011 Bonferroni correction) 45 = combination of 10 categories taken 2 at a time 16d 17p vs. 60d 21p (p<10 ⁻⁵) 16d 17p vs. 60d 21pv (p<10 ⁻⁴) 16d 17p vs. 60d 17pv (p<10 ⁻⁶) 60d 17pv vs. 24d 9p (p<10 ⁻³)										
	CD: 16d 17p < (60d 21p, 60d 21pv & 60d 17pv) 24d 9p < 60d 17pv									

P-Values from Paired t-test Microcalcification Detection									
DBT Protocol	16°-∆1°-17	40°-var-15	24°-∆3°-9	60°-var-21	40°-var-13	30°-∆3°-11	60°-∆3°-21		
16°-∆1°-17	7 –	0.012*	0.121	0.158	0.061	0.011*	0.000*		
* P	< 0.05								

Observation of super-resolution in digital breast tomosynthesis. Acciavatti R J, Maidment ADA, Med Phys 2012;39(12):7518-39

- Single energy: R Jong, M Hill, J Mainprize, & M Yaffe, Sunnybrook Health Sciences Center, Toronto
- Single and Dual energy: A-K Carton, J Currivan, E Conant & A Maidment, University of Pennsylvania

Diffuse Optical Tomography

- Multi-spectral Near Infrared Measurements (685, 810 & 830 nm)
- Generate 2D & 3D maps of total hemoglobin, oxygen saturation, & scattering coefficient.
- Characterize tissue angiogenesis & metabolism.
- Functional overlay on DBT structural images.
- May reduce unnecessary biopsies.

Comprehensive DBT References

- 1) Sechopoulos, Ioannis , A review of breast tomosynthesis. Part I. The image acquisition process. MEDICAL PHYSICS 40 (1) JAN 2013 On Line only: http://dx.doi.org/10.1118/1.4770279
- 2) Sechopoulos, Ioannis, A review of breast tomosynthesis. Part II. Image reconstruction, processing and analysis, and advanced applications MEDICAL PHYSICS 40 (1) JAN 2013 On Line only: http://dx.doi.org/10.1118/1.4770281

Acknowledgements for slides & info:

GE: Luke Delaney of GE and Bob Liu of MGH
Sectra: Magnus Aslund and Mats Danielsson
X-Counter: Christer Ullberg
CE Tomo: James Mainprize & Roberta Jong of Toronto
DE Tomo: Andrew Maidment of U of Penn

Combined Tomo SPECT: Mark Williams of U of Virginia