# MAYO CLINIC

# X-ray fluoroscopy imaging in the invasive cardiac laboratory: Medical physics support of a contemporary practice

Kenneth A. Fetterly, Ph.D.

2013 AAPM Spring Clinical Meeting

# Outline

- 1. Introduction to the cardiac invasive laboratory
- 2. Introduction to interventional x-ray systems
- 3. System performance testing
- 4. Strategies for patient dose reduction
- 5. Novel, new, and emerging technologies



# 1. Introduction to the invasive cardiovascular laboratory

- Type of procedures
- Imaging equipment
- X-ray imaging tasks



### Coronary artery disease Partially occluded circumflex artery





## Coronary artery disease Stent deployment by balloon inflation





#### Coronary artery disease Post-intervention patent artery





## Ablation for atrial fibrillation





## Transcatheter aortic valve replacement





#### 2. Interventional x-ray systems Major components



MAYO

Image receptor Anti-scatter grid X-ray detector, fixed target dose

#### Patient

X-ray attenuation X-ray scatter Radiosensitive

#### X-ray tube

X-ray energy (kVp) Current (ma) Frame rate (s<sup>-1</sup>) Pulse duration (ms) Beam filtration (mm Cu)

### System control The basics

- Automatic exposure rate control (AERC)
  - Image detector has a program-specific target dose
  - Patient attenuates primary beam
  - X-ray tube output is adjusted to achieve detector target dose
  - For fluoro, maximum air kerma rate is regulated
- Output variables
  - Tube current
  - Peak tube potential
  - Pulse duration
  - Focal spot size
  - Filter composition and thickness (fixed or dynamic)



#### System control Experimental setup



FIG. 1. Experimental/geometrical arrangement. Ionization chamber 1 is employed for monitoring patient air kerma rate (PAKR) while ionization chamber 2 is employed for recording the flat panel input air kerma rate (FPIAKR).



Lin, Med Phys, 2007(34)

#### System control A modern example



Lin, Med Phys, 2007(34)



#### System control A modern example



Lin, Med Phys, 2007(34)



#### System control Effect of field size, traditional II Normal

Mag



MAYO



#### System control Effect of field size, traditional II

- Traditional image intensifier (II) automatic brightness control (ABC) maintained image brightness
  - Constant light intensity from the output phosphor
  - X-ray tube output was then inversely proportional to input intensifier field area
  - Patient dose was inversely proportional to field area and increased with decreasing FOV (or increasing electronic magnification)

![](_page_14_Picture_5.jpeg)

#### System control Effect of field size, FP system Normal

![](_page_15_Figure_1.jpeg)

![](_page_15_Figure_2.jpeg)

#### System control Effect of field size, FP system

- Flat panel (FP) image receptor systems control image brightness via image processing
  - There is not a technical need to change dose rate as a function of field size, or Mag mode
  - For new systems, detector target dose varies as a function of field size
  - Tube output vs FOV relationship is usually inversely proportional to FOV area or to linear FOV size.
  - As FOV decreases, displayed image Mag increases, the density of photons incident on the target anatomy increases, and the image looks better (and patient dose increases)

![](_page_16_Picture_6.jpeg)

# 3. System performance testing

- Resolution
- Beam quality
- Contrast to noise ratio
- Air kerma rate and patient entrance dose rate

![](_page_17_Picture_5.jpeg)

# Resolution

- Influenced by
  - Detector resolution
  - Focal spot penumbral blur
  - Image matrix resize for display
  - Image processing (noise reduction and detail enhancement)

![](_page_18_Picture_6.jpeg)

## Resolution

- Include object plane measurements
  - Use clinically relevant range of distances
- Test small (fluoro, acquisition) and large (acquisition) focal spots
- Test relevant FOVs
  - Watch for 2x2 pixel binning for large FOVs

![](_page_19_Picture_6.jpeg)

#### Resolution Geometric magnification and penumbral blur

Mag = 1

Mag = 1.5

![](_page_20_Figure_3.jpeg)

Small focal spot

Large focal spot

![](_page_20_Picture_6.jpeg)

![](_page_20_Picture_7.jpeg)

#### Resolution Influence of focal spot, geometric magnification, and focal spot penumbral blur

![](_page_21_Figure_1.jpeg)

![](_page_21_Picture_2.jpeg)

#### Resolution Effect of image processing, Mag = 1.5

Processed

Unprocessed

![](_page_22_Picture_3.jpeg)

Small focal spot

Large focal spot

MAYO CLINIC

## **Beam quality**

- Combination of kVp and HVL
- Legal minimum HVL values are too low to optimize image quality vs. patient dose
- Cu filters are used to remove low energy photons from the beam
  - Routinely used for fluoroscopy
  - Should also be standard for all acquisition imaging
  - 0.1 mm Cu reduces K by 40% and CNR by 10%

![](_page_23_Picture_7.jpeg)

#### HVL with Cu filtration 0.1 mm Cu increases HVL by 35% to 45%

![](_page_24_Figure_1.jpeg)

![](_page_24_Picture_2.jpeg)

## Contrast to noise ratio

- Human observer contrast and CNR phantom assessment is imprecise
- CNR measurements are straightforward
  - Use unprocessed image data
- CNR measurements provide insight into relationship between image quality and patient entrance air kerma rate
  - As a function of patient size
  - For various imaging modes

![](_page_25_Picture_7.jpeg)

![](_page_26_Picture_1.jpeg)

10 cm phantom 62 kVp 0.9 mm Cu 800 ma 6.8 ms 7.3 mGy/min

**CNR = 4.3** 

![](_page_26_Picture_4.jpeg)

![](_page_27_Picture_1.jpeg)

20 cm phantom 68 kVp 0.2 mm Cu 800 ma 6.8 ms 112 mGy/min

**CNR = 3.9** 

![](_page_27_Picture_4.jpeg)

![](_page_28_Picture_1.jpeg)

30 cm phantom 95 kVp 0.1 mm Cu 800 ma 7.0 ms 570 mGy/min

**CNR = 2** 

![](_page_28_Picture_4.jpeg)

![](_page_29_Picture_1.jpeg)

35 cm phantom 105 kVp 0.1 mm Cu 700 ma 10.1 ms 1,060 mGy/min

**CNR = 1.5** 

![](_page_29_Picture_4.jpeg)

#### Contrast to noise ratio Acquisition and fluoroscopy for 4 systems

![](_page_30_Figure_1.jpeg)

![](_page_30_Picture_2.jpeg)

## Air kerma monitoring Important points in space

![](_page_31_Figure_1.jpeg)

- 1. Air kerma reference point
  - fixed point in space at which patient air kerma  $(K_{a,r})$  is reported
  - from isocenter •, 15 cm toward the xray tube
- 2. FDA air kerma rate limit (range)
  - variable location to compare air kerma rate to the FDA limit
  - from detector, 30 cm toward x-ray tube
- 3. Patient skin (range)
  - variable location of patient skin surface
  - minimum possible distance determined by the x-ray tube cone

NCRP 2010

#### FDA regulation fluoroscopy air kerma limit

- Legal maximum air kerma rate (K<sub>FDA</sub>) is 10 R/min (88 mGy/min) for normal fluoroscopy
  - At a distance of 30 cm on the x-ray tube side of the image receptor (<sup>1</sup>)

![](_page_32_Picture_3.jpeg)

# Patient dose monitoring

- On-board air kerma-area product (P<sub>KA</sub>) meter (or calibrated algorithm) measures x-ray tube output
- Air kerma at the reference point ( $K_{a,r}$ ) calculated from  $P_{KA}$ , x-ray beam size, and distances
  - Reference point defined as 15 cm on the x-ray tube side of the system isocenter (•)
  - ± 35% tolerance is allowed
  - $\pm$  35% tolerance allows for reported K<sub>a,r</sub> and P<sub>KA</sub> values that differ by 2x for the same tube output
  - Recommendation use ± 20% tolerance

![](_page_33_Picture_7.jpeg)

## Real-world skin dose rate

- Given geometry of clinical procedures, instantaneous K<sub>a,r</sub> rate as reported by system can exceed K<sub>FDA</sub>
  - by more than 2x!
- Dependent on patient position within the beam, patient entrance K rate can be even higher!
- Finally, multiply for back-scatter factor 1.4, and then...
- Instantaneous patient skin dose rate can be as high as 280 mGy/min
  - Skin dose of 2 Gy in 7.1 minutes!

![](_page_34_Picture_7.jpeg)

#### Real-world patient entrance air kerma rate

![](_page_35_Figure_1.jpeg)

for low dose rate System 2 managed for high image quality

**Red** for maximum air kerma rate

![](_page_35_Picture_4.jpeg)

## Air kerma rate

- Should be measured for a clinically relevant range of patient sizes and imaging modes
  - Not just to satisfy the 88 mGy/min legal limit!
- Know how air kerma rate responds to patient size for fluoroscopy
  - Test low, normal, and high rate modes
  - Nominal 2x change between modes should be expected for average-sized patients
  - 44 mGy/min max air kerma rate modes are of limited utility for adult patients

![](_page_36_Picture_7.jpeg)

## Air kerma rate

- Understand how air kerma rate responds to patient size for acquisition imaging modes (cine, DSA)
  - There is not a legal maximum acquisition mode air kerma rate
  - Actual maximum acquisition air kerma rate often exceeds 2,000 mGy min<sup>-1</sup>.
  - Given geometry and BSF, instantaneous skin dose rate can exceed 3,000 mGy min<sup>-1</sup>.
    - 2 Gy in 40 seconds.

![](_page_37_Picture_6.jpeg)

## Patient radiation air kerma rate

- Even with properly functioning interventional fluoroscopy systems, patient radiation air kerma rates can be very high
- High air kerma is associated with
  - Detector target dose
  - Frame rate
  - Lack of beam filtration
  - Large patients
  - Steep projection angles
  - Long x-ray tube to detector distance
  - Short x-ray tube to patient skin distance

![](_page_38_Picture_10.jpeg)

# 4. Strategies for patient dose reduction

- Patient air kerma monitoring
- Spectral filtration
- Detector target air kerma
- Frame rate
- Low, normal, and high air kerma rate fluoroscopy
- Patient size and projection angle
- Custom settings for pediatric patients

![](_page_39_Picture_8.jpeg)

## Patient air kerma monitoring

- Record procedure cumulative air kerma (K<sub>a,r</sub>) for each patient procedure
- Review K<sub>a,r</sub> monthly
  - Look for temporal trends
  - Investigate outliers, especially high
  - Differences in procedure room, physician, etc.
  - Quantify effect of changes
- There are many opportunities for quality improvement related to patient dose

![](_page_40_Picture_8.jpeg)

## **Spectral filtration**

- Quite possibly the simplest way to reduce patient skin dose
- 0.1 mm Cu
  - reduces patient dose by 40%
  - decreases CNR by 10%
  - Use Cu for all imaging modes, not just fluoro

![](_page_41_Picture_6.jpeg)

### Detector target air kerma

- Patient K rate ~ target K
- By default, systems are configured to provide excellent image quality
- Reduce target K to reduce patient dose
- Reduce in 10% 20% increments to minimize immediate clinical impact
- Set default fluoro to very low level
- Provide a fall-back plan to the physicians to return to the 'old' settings during the procedure

![](_page_42_Picture_7.jpeg)

## Frame rate

- 30 fps
  - High patient K and/or low K per frame
  - Not necessary and should be avoided entirely for adult patients
  - Useful for small pediatric patients with very rapid heart motion

#### • 15 fps

- Current standard for adult cath acquisition imaging
- Standard for fluoroscopy at most sites

![](_page_43_Picture_8.jpeg)

## Frame rate

- 7.5 fps
  - Adequate for most adult fluoroscopy
  - Expect nominal ½ dose reduction compared to 15 fps
  - For large patients, allows higher K per frame within max K rate range
  - Watch for systems for which K rate is not proportional to frame rate!

![](_page_44_Picture_6.jpeg)

## Low, normal, and high dose rate fluoroscopy

- Low fluoro
  - Set lowest clinically useful fluoro dose rate as the system default
  - Frame rate 7.5 fps
  - Detector target dose as low as possible
  - Strive for low dose with adequate image quality rather than excellent image quality with high dose rate
  - Set maximum rate to 88 mGy/min to maintain utility for large patients
    - Maximum rate 44 mGy/min is of limited utility because IQ is inadequate for large patients

![](_page_45_Picture_8.jpeg)

## Low, normal, and high dose rate fluoroscopy

- Normal fluoro
  - 7.5 fps to 15 fps and/or detector increased K
  - Should have improved image quality compared to low fluoro
  - Set maximum rate to 88 mGy/min to maintain utility for large patients
  - Use when low fluoro does not provide adequate image quality
  - Never use 30 fps fluoroscopy for adult cath procedures

![](_page_46_Picture_7.jpeg)

## Low, normal, and high dose rate fluoroscopy

- High fluoro
  - 7.5 fps to 15 fps and/or increased detector K
  - Never use 30 fps
  - Should have improved image quality compared to normal fluoro
  - Set maximum rate to 174 mGy/min to provide maximum fluoro image quality (audible alert required)
  - Use very sparingly and only when excellent fluoro image quality is necessary
  - Manage systems to avoid using acquisition imaging to overcome lack of fluoro image quality

![](_page_47_Picture_8.jpeg)

#### Patient thickness and projection angle Cardiac cath lab patients

![](_page_48_Figure_1.jpeg)

![](_page_48_Picture_2.jpeg)

#### Skin air kerma rate and projection angle Patient average (mGy/min)

![](_page_49_Figure_1.jpeg)

![](_page_49_Picture_2.jpeg)

#### Relative frequency of projection angles Coronary artery procedures

![](_page_50_Figure_1.jpeg)

![](_page_50_Picture_2.jpeg)

# Custom settings for pediatric patients

- Children are more radiosensitive than adults
- Primarily structural heart disease
- Rapid heart rate and high velocity motion
- Lower scatter to primary ratio
- Cannot simply use adult programs and expect that AERC will provide optimum results
- Custom pediatric programs are required

![](_page_51_Picture_7.jpeg)

Gislason et. al, Med. Phys. 37(10) 2010

## Children 20 kg to 60 kg

- Detector target dose 20% lower than adult
- 7.5 fps low dose rate fluoro
  - Option for higher frame rate
- 15 fps acquisition
- Grid use optional
  - Removing the grid will reduce dose rate by ~35%
  - Reduction in image quality likely noticeable

![](_page_52_Picture_8.jpeg)

# Children <20 kg

- Detector target dose at least 20% lower than 20 kg to 60 kg
- 7.5 fps low dose rate fluoro
  - Option for higher frame rate
- 30 fps acquisition
  - To capture very fast motion
- Grid removal required
  - Removing the grid will reduce dose rate by ~35%
  - Image quality reduction is negligible

![](_page_53_Picture_9.jpeg)

#### Detector target air kerma and frame rate

![](_page_54_Figure_1.jpeg)

![](_page_54_Picture_2.jpeg)

#### Detector target air kerma and frame rate

![](_page_55_Figure_1.jpeg)

![](_page_55_Picture_2.jpeg)

## Patient population dose reduction

- There is opportunity for radiation dose reduction in all invasive cardiac labs
- Getting started
  - Requires active participation from physicians, technologists, vendor representatives, RSO, and medical physicist
  - Learn, teach, and implement best practices
  - Review patient dose metrics ( $K_{a,r}$ ,  $P_{KA}$ ) monthly
  - Measure air kerma rate vs patient thickness
  - Make incremental changes over time

![](_page_56_Picture_8.jpeg)

#### Adult cardiac cath patient dose reduction Change in K<sub>a,r</sub> over time

![](_page_57_Figure_1.jpeg)

![](_page_57_Picture_2.jpeg)

## Patient population dose reduction

- Distribution of  $P_{KA}$  and  $K_{a,r}$  is nearly Log-normal
  - Use Log( $P_{KA}$ ,  $K_{a,r}$ ) for statistical analysis
- Variability of K<sub>a,r</sub> is huge
  - 95<sup>th</sup> percentile is 15x greater than 5<sup>th</sup> percentile
  - Two-tailed t-test requires 2,200 observations per group required to detect a 10% change (p<0.05, power 80%)
  - Data stratification by procedure type or patient size may help to isolate high-radiation procedures
  - Longitudinal analysis is necessary
- Fluoro time is a poor surrogate for  $P_{KA}$  or  $K_{a,r}$

![](_page_58_Picture_9.jpeg)

## 5. New and emerging technologies

- Intra-vascular ultrasound (IVUS)
- Optical coherence tomography (OCT)
- Cone-beam CT
- 3D Ultrasound
  - Trans-esophageal echocardiography, intracardiac ultrasound
- RF mapping and navigation

![](_page_59_Picture_7.jpeg)

### Intra-vascular ultrasound

![](_page_60_Picture_1.jpeg)

With virtual pathology

![](_page_60_Picture_3.jpeg)

## Optical coherence tomography

![](_page_61_Picture_1.jpeg)

Very high resolution, very low tissue penetration

![](_page_61_Picture_3.jpeg)

#### Cone-beam CT

![](_page_62_Figure_1.jpeg)

On-going advances in motion compensation for cone-beam CT

![](_page_62_Picture_3.jpeg)

Rohkohl 2010

## 4D ultrasound

![](_page_63_Picture_1.jpeg)

For treating valve and structural heart disease

![](_page_63_Picture_3.jpeg)

## RF mapping and navigation

![](_page_64_Picture_1.jpeg)

![](_page_64_Picture_2.jpeg)

For treatment planning and recording during EP ablation procedures

## References

- NCRP 2010. National Council on Radiation Protection and Measurements Radiation Dose Management for Fluoroscopically-Guided Interventional Medical Procedures, NCRP Report No. 168 (National Council on Radiation Protection and Measurements, Bethesda, MD).
- ICRP 2013. International Commission on Radiological Protection. *Radiological Protection in Cardiology*, ICRP Publication 120, Ann. ICRP 42(1) (Elsevier, New York).
- Lin P-J, The operation logic of automatic dose control of fluoroscopy system in conjunction with spectral shaping filters, Med. Phys. 34(8), 3169-3172 (2007).
- FDA 2009. U.S. Food and Drug Administration Performance standards for ionizing radiation emitting products. Fluoroscopic equipment, 21 CFR Part 1020.32 (revised April 1), http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm
- Gislason AJ, Davies AG, Cowen AR, Dose optimization in pediatric cardiac x-ray imaging, Med. Phys. 37(10):5258-5269 (2010).
- Rohkohl C, Lauritsch G, Biller L, Hornegger J, ECG-Gated interventional cardiac reconstruction for non-period motion, Medical Image Analysis 14(5):151-158 (2010).

![](_page_65_Picture_7.jpeg)

## NCRP 168 Acronyms and Symbols

- $K_{a,e}$  entrance surface air kerma
- K<sub>a,i</sub> incident air kerma
- $K_{a,r}$  air kerma at the reference point
- $K_{FDA} U.S.$  FDA compliance air kerma rate limit
- P<sub>KA</sub> air kerma-area product
- SID x-ray source-to-image-receptor distance
- SSD x-ray source-to-skin distance
- RDSR DICOM Radiation Dose Structure Report

![](_page_66_Picture_9.jpeg)