

Why Dense Breasts Initially thought only significant benefit to dense breasts Later discovered benefit for fatty breasts as well Study 1 - Dense Breasts - 2D plus 3D - Study 1 - Dense Breasts - 2D plus 3D - Study 2 - Dense Breasts - 2D plus 3D - Study 2 - Dense Breasts - 2D plus 3D - Study 2 - Dense Breasts - 2D plus 3D - Study 2 - Dense Breasts - 2D plus 3D - Study 2 - Dense Breasts - 2D plus 3D - Study 2 - Dense Breasts - 2D plus 3D - Study 2 - Dense Breasts - 2D plus 3D - Study 1 - Dense Breasts - 2D plus 3D - Study 1 - Dense Breasts - 2D plus 3D - Study 1 - Dense Breasts - 2D plus 3D - Study 1 - Dense Breasts - 2D plus 3D - Study 1 - Dense Breasts - 2D plus 3D - Study 1 - Dense Breasts - 2D plus 3D - Study 1 - Dense Breasts - 2D plus 3D - Study 1 - Dense Breasts - 2D plus 3D - Study 1 - Dense Breasts - 2D plus 3D - Study 1 - Dense Breasts - 2D plus 3D - Study 1 - Dense Breasts - 2D plus 3D - Study 1 - Dense Breasts - 2D plus 3D - Study 2 - Dense Breasts - 2D plu

	.
*	
6-7	
All Adding	

Rationale for 3D plus *C-View

- The advantage of two-view tomosynthesis while reducing dose and capitalizing on the benefits of 3D
- Value of a 2-dimensional "summary" image:
 - Assessment of side to side symmetry
 - Assessment of interval change
 - Detection of calcifications
 - Recognition of the distributional aspect of features (particularly calcifications)

*Not approved for sale in the United States

The radiation dose for combo mode (2D plus 3D) is:

0% 0%

1. 1.45 mGy

0% 2

2. 2.65 mGy

0% 0% 3. 4.85 mGy

4. 8.85 mGy

5. 10.65 mGy

10

ANSWER

2.65 mGy

http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/MedicalDevices/MedicalDevicesAdvisoryCommittee/RadiologicalDevicesPanel/UCM226757.pdf

113

One of the major benefits of 3D imaging is:

0%

1. Lower radiation dose per case

0% 0%

2. Better visualization of calcifications

3. Less compression

00/

4. Elimination of superimposed normal tissues

5. Easier positioning

10

ANSWER

Elimination of superimposed normal tissues

Kopans. Breast Imaging, 3rd edition. Lippincott Williams and Wilkins

115

The one thing that C-View would NOT be helpful for would be:

- **0% 1**. Decreased radiation dose by about 50%
- 0% 2. Better visualization of smooth/benign0% masses
- 3. Accentuation of distortions and calcifications
 - 4. Comparison to prior 2D exams
 - 5. Guide for viewing the 3D image set

10

ANSWER

Better visualization of smooth/benign masses

http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesM eetingMaterials/MedicalDevices/MedicalDevicesAdvisoryCommittee /RadiologicalDevicesPanel/UCM325901.pdf

117

The major findings of the Oslo study regarding 2D imaging vs 2D plus 3D imaging for screening were:

0%

- **0%** 1. There were no advantages to including 3D imaging in their population
- $\begin{tabular}{ll} \bf 2. & There was a 40\% increase in the invasive cancer \\ & detection rate \\ \end{tabular}$
- 0% 3. The detection rate for noninvasive cancers fell by 10%
 - 4. 3D imaging was only helpful in denser breasts
 - 5. The call back rate for additional imaging increased, due to better visualization, by 25%

ANSWER

There was a 40% increase in the invasive cancer detection rate

Comparison of Digital Mammography Alone and Digital Mammography Plus
 Tomosynthesis in a Population-based Screening Program. Skaane P, Bandos AI,
 Gullien R, et al. Radiology, 2013 Jan 7. [Epub ahead of print]

119

What is the one thing we have NOT FOUND since tomosynthesis was introduced:

- 0% 1. Decreased call back rate for additional0% mammographic imaging by about 40%
- 0% 2. More BR3 (probably benign) results
- 3. Increased cancer detection rate (40% for invasive cancers, by Oslo study)
 - 4. Stable call back rate for ultrasound examinations
 - Increased positive predictive value for biopsies of about 35%

×	_	_
	1	n

ANSWER

More BR3 (probably benign) results

- Rose S, Bujnoch L, O'Toole M, Nordmann A, Sexton R, Willison K, Tidwell A.
 Breast Tomosynthesis and Digital Mammography for Breast Cancer Screening:
 Medical Outcomes Audit. Presented at RSNA 2012, VSBR41-06 Breast Series:
 Emerging Technologies in Breast Imaging
- Comparison of Digital Mammography Alone and Digital Mammography Plus
 Tomosynthesis in a Population-based Screening Program. Skaane P, Bandos Al,
 Gullien R, et al. Radiology, 2013 Jan 7. [Epub ahead of print]