Use of Image Registration and Fusion Algorithms and Techniques in Radiotherapy

Preliminary Recommendations from TG 132* Kristy Brock, Sasa Mutic, Todd McNutt, Hua Li, and Marc Kessler

*Report is currently under review by AAPM

Disclosure

- Kristy Brock: RaySearch Licensing
- Sasa Mutic: ViewRay Shareholder, Modus licensing agreement, Varian research and licensing, Radialogica Shareholder, Treat Safely Partner
- Todd McNutt: Philips Collaboration, Elekta Licensing
- Hua Li: Philips Research
- Marc Kessler: Varian research and codevelopment agreements

Learning Objectives

- 1. Understand the importance of acceptance testing, including end-to-end tests, phantom tests, and clinical data tests.
- 2. Describe the methods for validation and quality assurance of image registration techniques.
- 3. Describe techniques for patient specific validation.

Task Group Charge

- 1. Review the existing techniques and algorithms for image registration and fusion
- 2. Discuss issues related to effective clinical implementation of these techniques and algorithms in a variety of treatment planning and delivery situations
- 3. Discuss the methods to assess the accuracy of image registration and fusion
- 4. Discuss issues related to acceptance testing and quality assurance for image registration and fusion

Outline

- Importance of commissioning for image registration
- Methods for commissioning and clinical validation
- Example clinical workflow
- Q&A

Importance of Commissioning

Implementation effects accuracy^{1,2}

Connatinfor acquired hand on other studies

Potential Risks of Uncertainties

- Deformable registration is not 'always better' than rigid
 - More degrees of freedom = more potential for error

Example: Multi-modality imaging for Planning

Liver: CT (No Contrast = No visible GTV)

Liver: MR (Visible GTV)

Clinical Registration

X: 26.1mm Y: 119.8mm Z: -12.6mm

X: 1.9deg Y: -2.9deg Z: -4.6deg

Auto, liver last step

X: 25.6mm Y: 120.8mm Z: -26.1mm

X: -1.5deg Y: 2.5deg Z: -3.4deg

Nearby Structure Map

X: 14.5mm Y: 122.3mm Z: -26.1mm

X: -1.5deg Y: 2.5deg Z: 4.1deg

Liver Contour optimization

X: 13.0mm Y: 125.3mm Z: -19.0mm

X: 0.4deg Y: -1.3deg Z: 2.3deg

Overall Comparison [mm, Degrees]

Registration	dX	dY	dZ	X _{ROT}	Y _{ROT}	Z _{ROT}	Overlap
Clinical	26.1	119.8	12.6	1.9	-2.9	-4.6	Defined
Auto	25.6	120.8	-26.1	-1.5	2.5	-3.4	
Vessel	14.5	122.3	26.1	-1.5	2.5	4.1	
Boundary	13.0	125.3	19.0	0.4	-1.3	2.3	

Example: Dose Accumulation

Deformable Registration

New method to validate Deformable Image Registration

Deformable 3D Presage dosimeters

Control (No Deformation)

Deformed (27% Lateral Compression)

Dosimeter & Deformable Registration-based Dose Accumulation: Dose Distributions

Field Shape Differences

DVF-based

De

Caution must be used when accumulating dose, especially in regions of the image with homogeneous intensity.

nts

Validation and QA How do we Prove it is Reliable?

Commissioning is Important!

- LINAC
 - Know how it works

Why is this particularly challenging for deformable registration?

- Algorithms typically don't rely on fundamental physics related to the human anatomy/physiology
 - Deformable Registration Algorithm
 - Find out how it works!
 - Accept and Commission the software
 - Perform an end-to-end test in your clinic

Visual Verification

Excellent tool for established techniques Not enough for Commissioning

Validation Techniques

- Matching Boundaries
 - Does the deformable registration map the contours to the new image correctly?
- Volume Overlap
 - DICE, etc
- Intensity Correlation
 - Difference Fusions
 - CC, MI, etc
- Digital/Physical Phantoms
- Landmark Based
 - TRE, avg error, etc

Landmark Based

- Reproducibility of point identification is sub-voxel
 - Gross errors
 - Quantification of local accuracy within the target
 - Increasing the number increases the overall volume quantification
- Manual technique
- Can identify max errors

Does Contour Matching Prove Reliability?

Digital or Physical Phantoms

- NCAT Phantom
- U of Mich lung phantom (Kashani, Balter)
- McGill lung phantom (Serban)
- Can know the true motion of all points
- Doesn't include anatomical noise and variation, likely not as complex as true anatomical motion
- Does give a 'best case' scenario for similarity/geometric defm reg algorithms

Commissioning and QA Understand the whole picture

Validation Tests and Frequencies

<u>Frequency</u>	Quality Metric	<u>Tolerance</u>
Acceptance and	System end-to-end tests	Accurate
Commissioning	Data Transfer (including orientation,	
Annual or Upon	image size, and data integrity)	
Upgrade	Using physics phantom	
	Rigid Registration Accuracy (Digital	Baseline, See details in
	Phantoms, subset)	Table Z
	Deformable Registration Accuracy	Baseline, see details in
	(Digital Phantoms, subset)	Table Z
	Example patient case verification	Baseline, see details in
	((including orientation, image size,	Table Z
	and data integrity)	
	Using real clinical case	

Validation Tests and Frequencies

<u>Frequency</u>	Quality Metric	<u>Tolerance</u>
Each Patient	Data transfer	Accurate
	Patient orientation	Image Data matches specified orientation (Superior/Inferior, Anterior/Posterior, Left/Right)
	Image size	Qualitative – no observable distortions, correct aspect ratio
	Data Integrity and Import	User defined per TG53 recommendations
	Contour propagation	Visual confirmation that visible boundaries are within 1-2 voxels of contours; documentation of conformity and confidence
	Rigid registration accuracy	At Planning: confirmation that visible, relevant boundaries are within 1-2 voxels; additional error should feed into margins
		At Tx: confirmation that visible boundaries are within PTV/PRV margins (doesn't account for intrafraction motion)
	Deformable registration accuracy	At Planning: confirmation that visible, relevant boundaries and features are within 1-2 voxels; additional error should feed into margins
		At Tx: confirmation that visible boundaries are within PTV/PRV margins (doesn't account for intrafraction motion)

Commissioning Datasets*

- Basic geometric phantoms (multimodality)¹
- Pelvis phantom (CT and MR)¹
- Clinical 4D CT Lung² with simulated exhale¹

- 1. Courtesy of ImSim QA
- 2. Courtesy of DIR Lab, MD Anderson Cancer Center

^{*}To be made publically available following the approval of TG 132 by AAPM

Why Virtual Phantoms

- Known attributes (volumes, offsets, deformations, etc.)
- Testing standardization we all are using the same data
- Geometric phantoms quantitative validation
- Anthropomorphic realistic and quantitative

Still need end-to-end physical images

Example Digital Phantoms Provided by the TG-132 via ImSimQA

Example Digital Phantoms Provided by the TG-132 via ImSimQA

BP1CTHFS

CTHFS001 2/7/2006 O Rot(X,Y,Z)=(0.00,0.00,0.00) 4/16/2013

Scan Nr. 1 - Slice 1/46

OSL - kV, - mAs Slice Thk 3.0mm FOV 360 mm Zoom 100%

Example Digital Phantoms Provided by the TG-132

Example Digital Phantoms Provided by the TG-132

BA1CTHFS

ACTHFS01 2/7/2006 O Rot(X,Y,Z)=(0.0,0.0,0.0) - Tra(X,Y,Z)=(10.0,11.0,0.0) 4/16/2013 Scan Nr. 1 - Slice 1/141 - kV, - mAs Slice Thk 3.0mm FOV 468 mm Zoom 100%

Recommended Tolerances for the Digital Phantom Test Cases

PHAN	MOT	AND	TEST

Basic geometric phantom registration

Scale - Dataset 1

Voxel value - Dataset 1

Registration - Datasets 2, 3, 4, 5, 6

Contour propagation - Datasets 2, 3, 4, 5, 6

Orientation - Datasets 2, 3, 4, 5, 6

Basic anatomical phantom registration

Orientation - Datasets 1, 3, 4

Scale - Data sets 1, 3, 4

Voxel value - Datasets 1, 2, 3, 4, 5

Registration - Datasets 2, 3, 4, 5

Contour propagation - Datasets 2, 3, 4, 5

Basic deformation phantom registration

Orientation - Dataset 2

Registration - Dataset 2

Sliding deformation phantom registration

Orientation - Dataset 2

Scale - Dataset 2

Registration - Dataset 2

Volume change deformation phantom registration

Orientation - Dataset 2

Scale - Dataset 2

Registration - Dataset 2

TOLERANCE

0.5 * voxel (mm)

Exact

0.5 * voxel (mm)

1 * voxel (mm)

Correct

Correct

0.5 * voxel (mm)

± 1 nominal value

0.5 * voxel (mm)

1 * voxel (mm)

Correct

95% of voxels within 2 mm, max error less than 5 mm

Correct

0.5 * voxel (mm)

95% of voxels within 2 mm, max error less than 5 mm

Correct

0.5 * voxel (mm)

95% of voxels within 2 mm, max error less than 5 mm

Example Clinical Workflow

- Clinic purchased a stand-alone deformable registration system to enable MR-CT registration for SBRT Liver
- Commissioning
- Clinical case validation
- Clinical workflow
- Patient specific QA

Evaluate Registration Products

- Learn how the different solutions work
- Talk to users
- Evaluate clinical integration and flexibility
- Purchase

Commissioning

- Perform end-to-end test with physical phantom
- Download electronic phantom datasets from TG 132
 - Perform baseline commissioning
- Use ~ 10 retrospective clinical cases to quantitatively assess accuracy

Clinical Integration

- 1. Clear guidelines are provided to the personnel implementing the image registration and fusion,
- An efficient, patient specific validation is performed for each image registration prior to its use (e.g. qualitative assessment of registration results),
- Secondary checks or validation are performed at a frequency to minimize the effect of errors without prohibiting clinical flow,
- 4. Clear identification of the accuracy of the registration are provided to the consumer of the image fusion so they are fully aware of and can account for any uncertainties.

Clinical Integration

- Must consider context of registration
 - Timing, Tolerances, Evaluation, etc.
 - Systematic vs. random effects

Request

- Clear identification of the image set(s) to be registered
 - Identification of the primary (e.g. reference) image geometry
- An understanding of the local region(s) of importance
- The intended use of the result
 - Target delineation
- Techniques to use (deformable or rigid)
- The accuracy required for the final use

Report

- Identify actual images used
- Indicate the accuracy of registration for local regions of importance and anatomical landmarks
 - Identify any critical inaccuracies to alert the user
- Verify acceptable tolerances for use
- Techniques used to perform registration
- Fused images in report with annotations
- Documentation from system used for fusion

Assessment Level	Phrase	Description
0	Whole scan aligned	 Anatomy within 1 mm everywhere Useful for structure definition everywhere Ok for stereotactic localization
1	Locally aligned	 Anatomy local to the area of interest is un-distorted and aligned within 1mm Useful for structure definition within the local region Ok for localization provided target is in locally aligned region
2	Useable with local anatomical variation	 Aligned locally, with mild anatomical variation Useful for reference only during structure definition on primary image set Care should be taken when used for localization
3	Useable with risk of deformation	 Acceptable registration required deformation which risks altering anatomy Shouldn't be used for target definition as target may be deformed Useable for dose accumulation
4	Useable for diagnosis only	 Registration not good enough to rely on geometric integrity Possible use to identify general location of lesion (e.g PET hot spot)
5	Alignment not acceptable	Unable to align anatomy to acceptable levelsPatient position variation too great between scans

TG-132 Product

- Guidelines for understating of clinical tools
- Digital (virtual) phantoms
- Recommendations for commissioning and clinical implementation
- Recommendations for periodic and patient specific QA/QC
- Recommendations for clinical processes

Q & A?

Survey

- Do you use deformable registration in your clinic?
- Did you perform a formal commissioning process?
- Do you trust deformable registration for dose accumulation?