

A Roadmap for Installing and Commissioning New Equipment

Introduction

Sonja Dieterich, Ph.D. Associate Professor, UC Davis

You are responsible for commissioning a new linac. You have not done this before. It is now a few months before project start. EVERYONE wants to know:

When are we treating the first patient?

UC DAVIS MEDICAL CENTER
COMPREHENSIVE CANCER CENTER
RADIATION ONCOLOGY

Learning Objectives

- To learn how to build a new equipment commissioning project plan
- To identify equipment, personnel resources and commissioning time required
- 3. Understand how to account for commissioning new technology with small install base
- Learn to develop a representative commissioning plan for a linac, CK, HDR unit or treatment planning system

The handout of this lecture is available as pdf on meeting website

"An ounce of preparation is worth a pound of cure" (Benjamin Franklin)

UC DAVIS MEDICAL CENTER
COMPREHENSIVE CANCER CENTER
RADIATION ONCOLOGY

In so much more words ...

- Good preparation <u>saves</u> you time. Lots of it.
- Good preparation helps you understand precisely what you need to do.
- Good preparation <u>lowers the risk</u> of serious errors
- Good preparation allows you to recover quickly from the unexpected

ACCIDENTS

1/3 of accidents have contributing causes originating from inadequate preparation

Typical Schedule of Events

1. <u>Construction and Install</u>

- Removal of existing equipment (riggers)
- Room Infrastructure (hospital/vendor contractor)
- Install of new equipment (riggers, vendor)
- Cosmetic fixes (hospital contractor)

2. <u>Acceptance testing</u>

- Physicist with vendor personnel
- Tests defined in vendor acceptance testing document

3. <u>Commissioning</u>

- Radiation Safety Measurements
- Beam Data
- TG-119, Imaging QA, E2E tests, TPS for new machine ...
- Policies and procedures

4. Clinical Go-Live

- Training
- First patients

Construction: Building and Room

- Mostly handled by facilities/vendor except:
- Planning phase:
 - Shielding calculation, peer review of shielding calculation
 - Room design: storage, cable ducts, monitors & camera positions ...
- Actual construction:
 - Go visit the site regularly!!!
 - Base frame on wrong site of couch!
 - empty soda can thrown into primary barriers ...
 - Take photos for future reference: e.g. cable duct location

Construction: Install of Equipment

- Performed by vendor
- Learn about components from engineers
- Touch base daily to find out about possible delays

Acceptance Testing

- Definition: Vendor demonstrates to you that the machine fulfills all specs as defined in the purchase contract
 - Get a copy of the purchase contract and acceptance testing document well in advance
- Time for acceptance testing is often <u>NOT</u> included in install time estimates!
- Your signature on acceptance testing document transfers the machine from vendor owned to hospital
- Any changes made after this will be covered by service contract (if applicable) or charged
- Therefore: do not accept tests results that are just barely meeting specs (e.g. 0.95 mm for a 1 mm tolerance)
 - Diplomatically but firmly push the engineer
 - remember 80/20 rule.

Where do I find information on what I need to do for commissioning?

AAPM TGs:

- Tests and tolerances
- Equipment
- No information on time or personnel

 except TG 179

Publications:

- Detectors, methods
- Reference beam data (e.g. small field output factors)
- TPS manuals (e.g. Pinnacle has a nice guide specifying beam data needed for modeling)

Peers:

- Copy of commissioning reports
- Time estimates
- Lots of useful tips & tricks

Commissioning

- Details covered by following speakers
- Consider developing a Project Chart
 - Helps the visual thinkers
 - Great communication tool (admins, physicians)

Commissioning: People and Coverage

- Staff
 - How many people available for commissioning?
 - Make sure not taking vacation gets discussed ...
 - Possibly working early/late shifts?
 - Who covers the rest of the clinic?
- Other departments:
 - IT: connectivity, firewalls, backup
 - RSO: Shielding Survey

Commissioning: Equipment

- List of equipment and materials:
 - Water Tank
 - Detectors: chambers, film, gels
 - Daily, monthly and DQA phantoms
 - Outside calibration check (RPC, peer review)
 - BEAM DATA (golden sets, peers, publications)

- Check functionality:
 - Water tank: maintenance, software update
 - Chamber calibration up to date?
 - Film expiration date, enough supplies
 - Test equipment in existing beam

Commissioning: Preparing A Road Map for Tasks

- Create a road map document:
 - **List** of measurement tasks (use outline function). Under each list entry, write down:
 - Estimated time needed***
 - Equipment needed
 - 1-2 sentences on setup
 - Data processing method (if applicable)
 - List tolerances if applicable
 - Result: Pass/Fail
 - Create table of contents from outline
- This list is your **BLUEPRINT** for the commissioning report!
- Use Table of Contents as checklist

Sample Roadmap (Coarse View)

- 1. Beam Data 1st and 2nd physics in shifts, with 2nd yr resident)
 - Order of measurement:
 - Fixed cones
 - 1. Output Factor (use S:/2013 CK commissioning/OF/fixed.xslx)
 - 2. TPR (S:/2013 CK commissioning/TPR/TPR_fixed_60mm.xslx)
 - 3. Profiles (S:/2013 CK commissioning/OCR/OCR_fixed_60mm.xslx)
 - 2. IRIS (2nd physicist starts processing fixed cone data)
 - 3. **MLC**
 - 2. TPS commissioning (2nd physicist & 2nd yr resident, in parallel with machine commissioning)
 - 1. TG-53
 - 2. TG-105
 - 3. Machine commissioning (1st physicist & 1st yr resident)
 - 1. Imaging QA (TG-142)
 - 2. **E2E** tests (TG-119)
 - 3. ...

Sample Roadmap (Zoom)

Section 1.1.1.1 Output Factor for Fixed Cone

Estimated Time: 2-3 hours***

Equipment: Water tank, birdcage, SunNuclear Edge S/N,

electrometer S/N

<u>Setup:</u> Align robot vertically at 75 cm SSD (use fixed cone front pointer!). Mount diode on birdcage. Verify diode is centered and parallel to surface.

<u>Data Analysis</u>: Use FixedCone.xlsx provided by vendor.

Tolerance: +- 3% to Reference Data Set

---- INSERT PLOT AND TABLE HERE ----

Result: TBD

***How do I figure out how much time it takes?

- When was the last time you did an Annual QA?
- You are a physicist: take data!
- How long does it take you to:
 - Set up a water tank
 - Measure PDD for 5 field sizes
 - Measure beam profiles
 - •
- Talk to your peers

Documentation

- Shielding survey report:
 - Needs to be filed with state
 - Response time from state before patients can be treated
 - Need to prioritize measurements and report
- Commissioning report:
 - Use your action plan as blueprint

Who needs what information from you?

- Everyone: How long will each step take?
- Physicians:
 - Impact on their patients
 - How to scheduling patients on new machine
 - Training
- RTTs/Schedulers:
 - Day the machine will go down
 - Day the new machine will be up
 - Training