# Monte Carlo treatment planning in the clinic - successes and challenges

Part II-electron beams

Joanna E. Cygler, Ph.D.

The Ottawa Hospital Cancer Centre, Ottawa, Canada Carleton University Dept. of Physics, Ottawa, Canada University of Ottawa, Dept. of Radiology. Ottawa, Canada



The Ottawa | L'Hopital | d'Ottawa | Cancer Centre





#### Objectives - electron beams

- Currently available commercial MC-based treatment planning systems for electron beams.
- Commissioning of such systems in terms of beam models and dose calculation modules.
- Factors associated with MC dose calculation within the patient-specific geometry, such as statistical uncertainties, CT-number to material density assignments, and reporting of dose-to-medium versus dose-to-water.
- Possible clinical impact of MC-based electron beam dose calculations



### Rationale for Monte Carlo dose calculation for electron beams

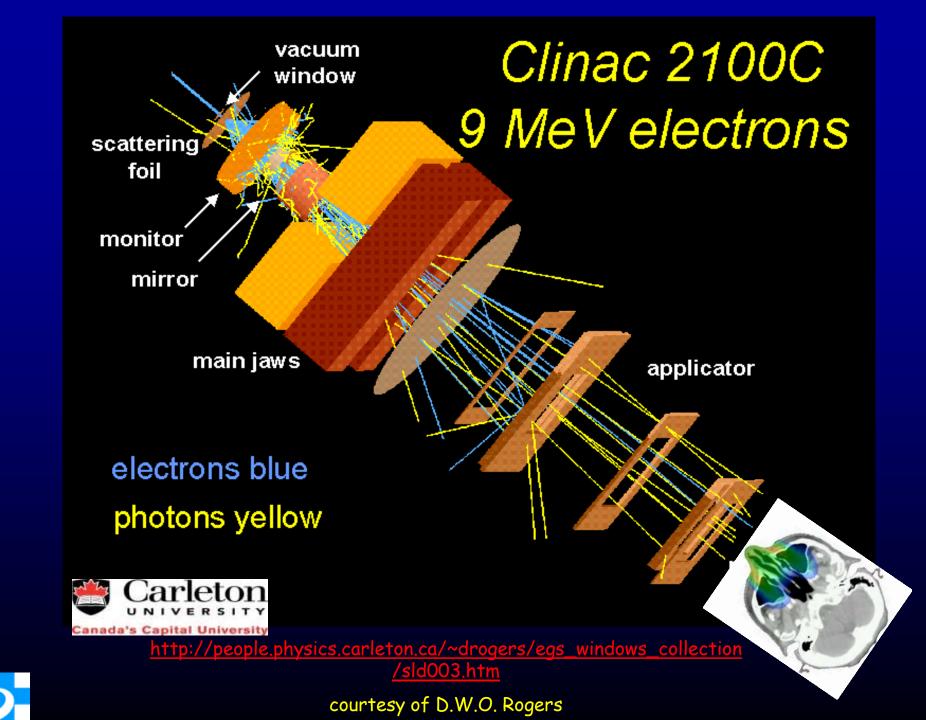
- Difficulties of commercial pencil beam based algorithms
  - Monitor unit calculations for arbitrary SSD values
     large errors\*
  - Dose distribution in inhomogeneous media has large errors for complex geometries
    - \* can be circumvented by entering separate virtual machines for each SSD labour consuming



## Monte Carlo based Treatment Planning Systems

M C dose calculations give in general the right answer

- There are no significant approximations
  - no approximate scaling of kernels is needed
  - electron transport is fully modelled
  - geometry can be modelled as exactly as we know it
  - all types of heterogeneities can be properly handled
- There are many experimental benchmarks showing M C calculations can be very accurate (see the references)




## Components of Monte Carlo based dose calculation system

There are two basic components of MC dose calculations, see the next slide:

- 1. Particle transport through the accelerator head
  - Explicit transport (e.g. BEAM code)
  - Accelerator head model (parameterization of primary and scattered beam components)
- 2. Dose calculation in the patient





### Particle transport through the machine head - beam models

- · Direct MC simulation of the accelerator head
  - beam simulations can be done accurately if all the parameters are known but they often are not
- Beam models provide a solution to the above problem
  - is any algorithm that delivers the location, direction and energy of particles to the patient dose-calculating algorithm.



#### Example of a beam model

#### Sub-sources

1 - the main diverging source of electrons and photons;

2 - edge source of electrons;

3 - transmission source of photons;

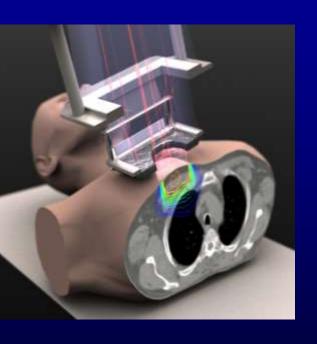
4 - line source of electrons and photons.

Beam model: Multiple source model

Dose calculation



M.K. Fix et al, Phys. Med. Biol. 58 (2013) 2841-2859




### Commercial implementations

- MDS Nordion (Nucletron now Elekta) 2001
  - First commercial Monte Carlo treatment planning for electron beams
  - Kawrakow's VMC++ Monte Carlo dose calculation algorithm (2000)
  - Handles electron beams from all clinical linacs
- Varian Eclipse eMC 2004
  - Neuenschwander's MMC dose calculation algorithm (1992)
  - Handles electron beams from Varian linacs only (23EX)
  - work in progress to include beam models for linacs from other vendors (M.K. Fix et al, Phys. Med. Biol. 58 (2013) 2841-2859)
- CMS (now Elekta) XiO eMC for electron beams 2010
  - Based on VMC (Kawrakow, Fippel, Friedrich, 1996)
  - Handles electron beams from all clinical linacs



## Nucletron Electron Monte Carlo Dose Calculation Module



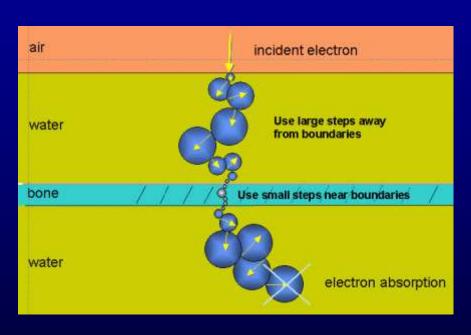
510(k) clearance (June 2002)

- ·Originally released as part of Theraplan Plus
- ·Currently sold as part of Oncentra Master Plan
- •Fixed applicators with optional, arbitrary inserts, or variable size fields defined by the applicator like DEVA
- Calculates absolute dose per monitor unit (Gy/MU)
- User can change the number of particle histories used in calculation (in terms of particle #/cm²)
- Data base of 22 materials
- Dose-to-water is calculated in Oncentra
- •Dose-to-water or dose-to-medium can be calculated in Theraplan Plus MC DCM
- Nucletron performs beam modeling



## Varian Macro Monte Carlo transport model in Eclipse

- An implementation of Local-to-Global (LTG) Monte Carlo:
  - Local: Conventional MC simulations of electron transport performed in well defined local geometries ("kugels" or spheres).
    - Monte Carlo with EGSnrc Code System PDF for "kugels"
    - 5 sphere sizes (0.5-3.0 mm)
    - 5 materials (air, lung, water, Lucite and solid bone)
    - 30 incident energy values (0.2-25 MeV)
    - PDF table look-up for "kugels"


## stanging stanging distance beauty of extension of the stanging sta

#### The above step is performed off-line.

 Global: Particle transport through patient modeled as a series of macroscopic steps, each consisting of one local geometry ("kugel")



## Varian Macro Monte Carlo transport model in Eclipse



- · Global geometry calculations
  - CT images are pre-processed to user defined calculation grid
  - HU in CT image are converted to mass density
  - The maximum sphere radius and material at the center of each voxel is determined
    - Homogenous areas  $\rightarrow$  large spheres
    - In/near heterogeneous areas → small spheres



### Varian Eclipse Monte Carlo

- User can control
  - Total number of particles per simulation
  - Required statistical uncertainty
  - Random number generator seed
  - Calculation voxel size (several sizes available)
  - Isodose smoothing on / off
    - Methods: 2-D Median, 3-D Gaussian
    - Levels: Low, Medium, Strong
- Dose-to-medium is calculated



#### CMS XiO Monte Carlo system

- XiO eMC module is based on the early VMC\* code
  - simulates electron (or photon) transport through voxelized media
- The beam model and electron air scatter functions were developed by CMS
- CMS performs the beam modeling
- The user can specify
  - voxel size
  - dose-to-medium or dose-to-water
  - random seed
  - total number of particle histories per simulation
  - or the goal Mean Relative Statistical Uncertainty (MRSU)
  - minimum value of dose voxel for MRSU specification



#### User input data for MC based TPS

#### Treatment unit specifications:

- Position and thickness of jaw collimators and MLC
- For each applicator scraper layer:
   Thickness
   Position
   Shape (perimeter and edge)

For inserts:

 Thickness
 Shape
 Composition

Composition



### User input data for MC TPS cont

Dosimetric data for beam characterization (beam model), as specified in User Manual, for example:

#### Beam profiles without applicators:

- -in-air profiles for various field sizes
- -in-water profiles
  - -central axis depth dose for various field sizes
  - -some lateral profiles
- Beam profiles with applicators:
  - Central axis depth dose and profiles in water
  - Absolute dose at the calibration point

#### Dosimetric data for verification



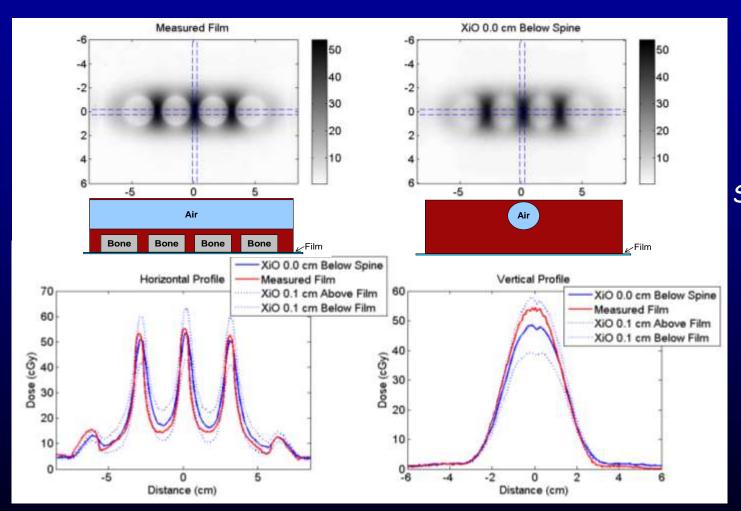
 Central axis depth doses and profiles for various field sizes

## Clinical implementation of MC treatment planning software

- Beam data acquisition and fitting
- Software commissioning tests\*
  - Beam model verification
    - > Dose profiles and MU calculations in a homogeneous water tank
  - In-patient dose calculations
- Clinical implementation
  - procedures for clinical use
  - possible restrictions
  - staff training

\*should include tests specific to Monte Carlo

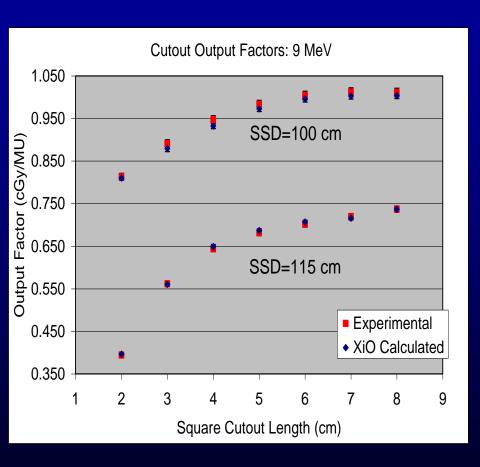
A physicist responsible for TPS implementation should have a thorough understanding of how the system works.

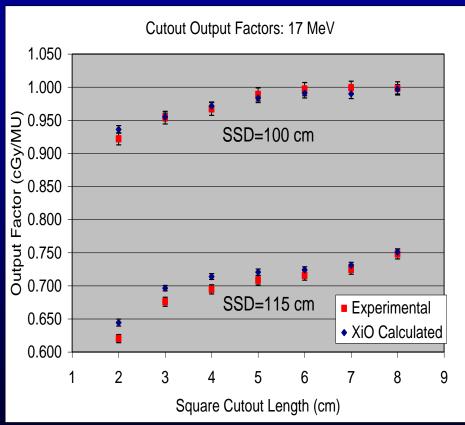



### Software commissioning tests: goals

- Setting user control parameters in the TPS to achieve optimum results (acceptable statistical noise, accuracy vs. speed of calculations)
  - Number of particle histories
  - Required statistical uncertainty
  - Voxel size
  - Smoothing
- Understand differences between water tank and real patient anatomy based monitor unit values




### XiO: 9 MeV - Trachea and spine importance of high quality data

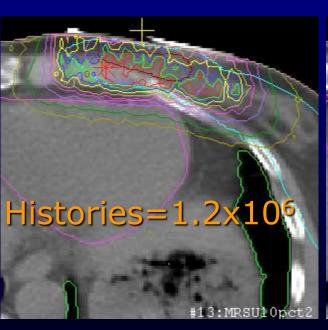


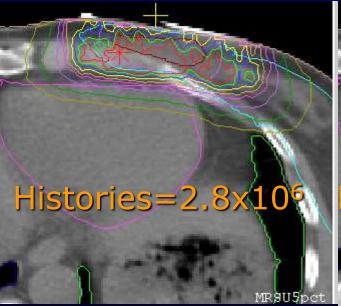

SU-E-T-669

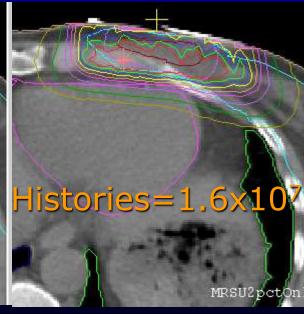


### Example of beam model verification CMS eMC: cutout factors



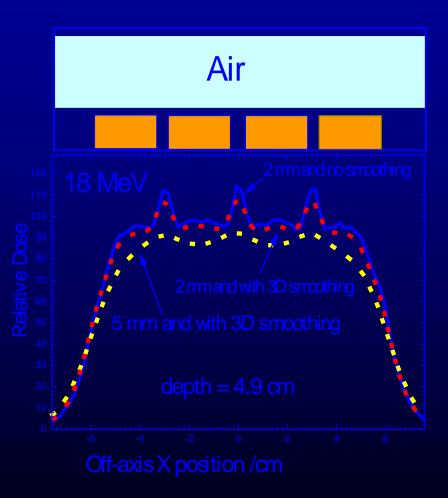


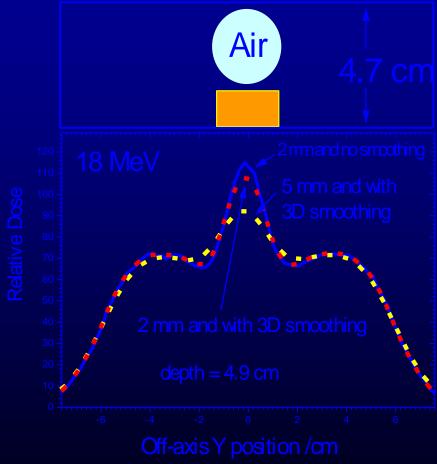


Vandervoort and Cygler, COMP 56th Annual Scientific Meeting, Ottawa ,June 2010




### Monte Carlo Settings: Noise in the dose distributions

Varying MRSU, voxel size=2.5×2.5×2.5 mm³, dose-to-medium, 6 MeV beam, 10×10 cm² applicator

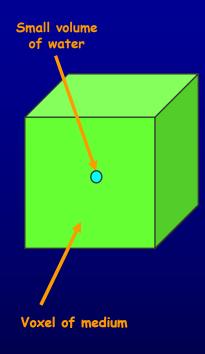






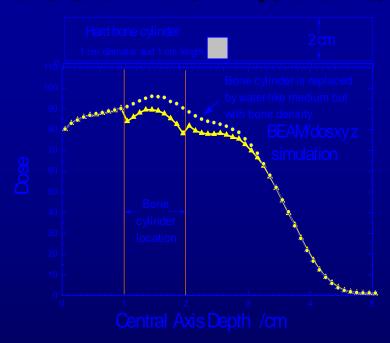

#### Eclipse eMC Effect of voxel size and smoothing








Ding, G X., et al (2006). Phys. Med. Biol. 51 (2006) 2781-2799.


#### Dose-to-water vs. dose-to-medium

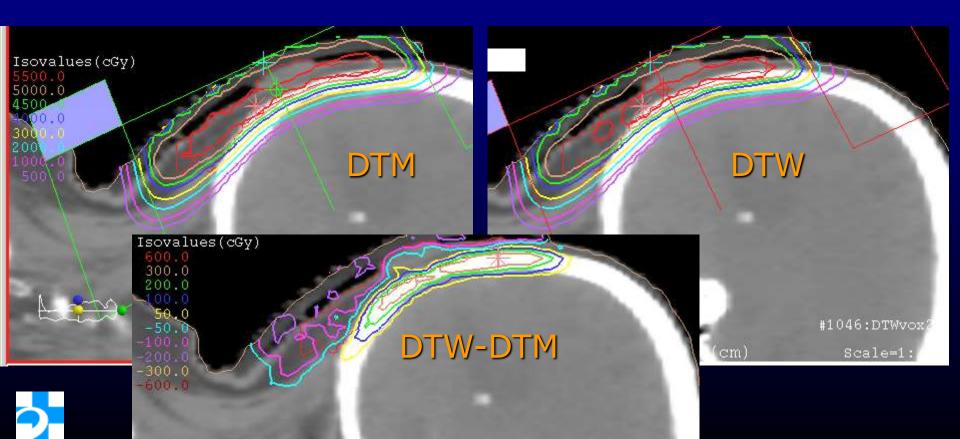


 $D_m$  - energy absorbed in a medium voxel divided by the mass of the medium element.

 $D_w$  - energy absorbed in a small cavity of water divided by the mass of that cavity.

$$D_w = D_m \left(\frac{S}{\rho}\right)_m^w$$








depth in water /cm

#### Dose-to-water vs. Dose-to-medium

Dose-to-water vs. dose-to-medium, MRSU=2%, voxel size=4×4×4 mm<sup>3</sup>, 6 MeV beam, 15x15 cm<sup>2</sup> applicator, both 602 MU



#### MU MC vs. hand calculations

#### Monte Carlo

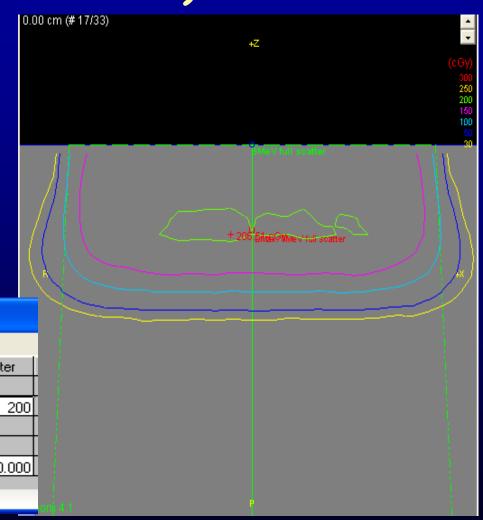
Real physical dose calculated on a patient anatomy

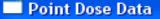
Inhomogeneity correction included

Arbitrary beam angle

#### Hand Calculations

Rectangular water tank

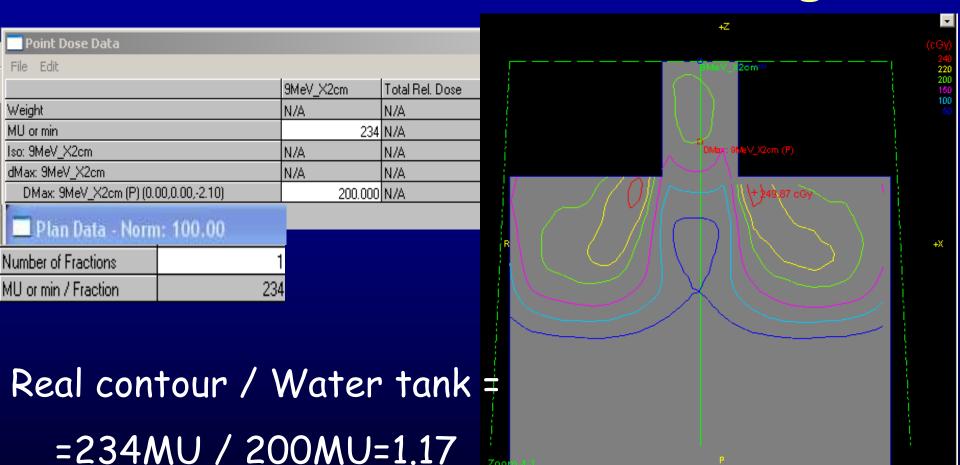

No inhomogeneity correction


Perpendicular beam incidence only



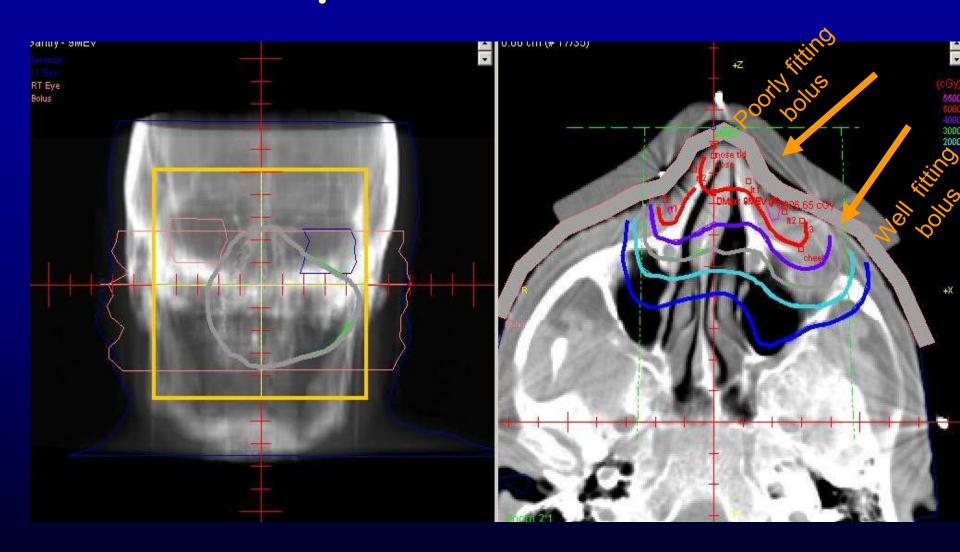
## 9 MeV, full scatter phantom (water tank)

RDR=1 cGy/MU






| File Edit                                 |                   |
|-------------------------------------------|-------------------|
|                                           | 9MeV full scatter |
| Weight                                    | N/A               |
| MU or min                                 | 200               |
| Iso: 9MeV full scatter                    | N/A               |
| dMax: 9MeV full scatter                   | N/A               |
| DMax: 9MeV full scatter (0.00,0.00,-2.10) | 200.000           |
|                                           |                   |




### Lateral scatter missing

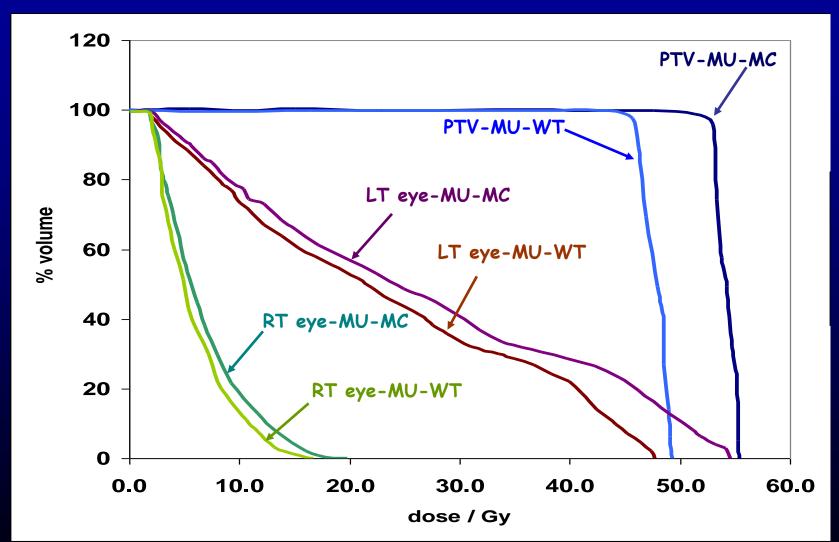


Reason for more MU: % isodose at the <u>nominal (reference)</u>  $d_{max} \ depth < 100\%$ 

#### MU real patient vs.water tank

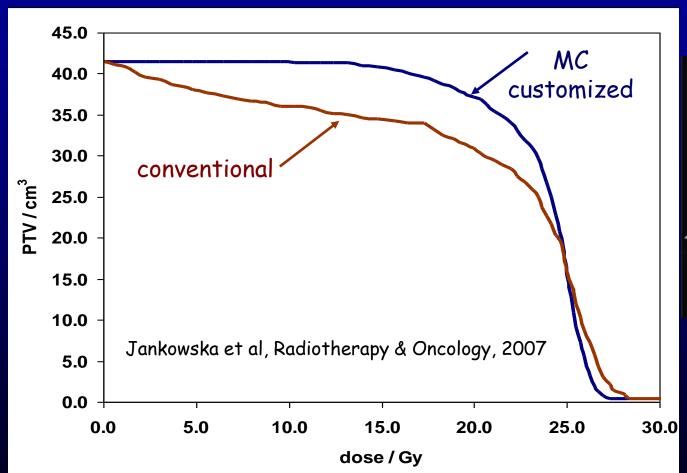


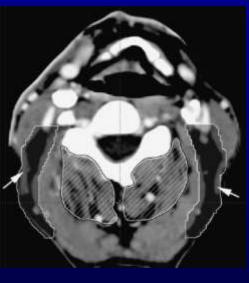



### Internal mammary nodes









#### MU-real patient vs. water tank: Impact on DVH



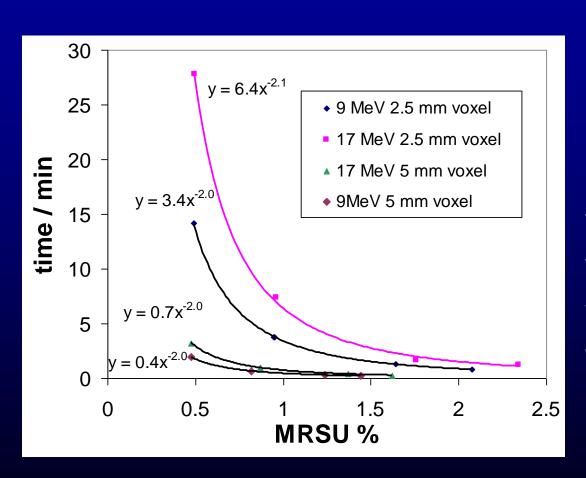


### Posterior cervical lymph node irradiation - impact on DVH








#### How long does it take?

- MC gives entire dose distribution in the irradiated volume, not just a few points
- time for N beams is the same as for 1 beam
- timing is a complex question since it depends on
  - statistical uncertainty and how defined
  - voxel size
  - field size
  - beam energy and whether photons or electron
  - speed of CPU and optimization of compiler
  - complexity of patient specific beam modifiers





### Monte-Carlo Settings: Effect on computation time



Timing Results XiO TPS:

For 9 and 17 MeV beams, 10x10 cm<sup>2</sup> applicator and the trachea and spine phantom, timing tests were performed for a clinical XiO Linux workstation, which employs 8 processors, 3 GHz each, with 8.29 GB of RAM.



J.E. Cygler and G.X. Ding, in Monte Carlo Techniques in Radiation Therapy, ISBN-10: 1466507926, Taylor & Francis (CRC Press INC) Boca Raton 2013, p 155-166

#### Summary - electron beams

- Commercial MC based TP systems are available
  - fairly easy to implement and use
  - MC specific testing required
- Fast (minutes) and accurate 3-D dose calculations
- Single virtual machine for all SSDs
- Large impact on clinical practice
  - Accuracy of dose calculation improved
  - More attention to technical issues needed
  - Dose-to-medium is calculated, although some systems calculate dose-to-water as well
  - MU based on real patient anatomy (including contour irregularities and tissue heterogeneities)
- · Requirement for well educated physics staff

#### Acknowledgements

George X. Ding

George Daskalov

Gordon Chan

Robert Zohr

Ekaterina Tchistiakova

Junior Akunzi

Indrin Chetty

Margarida Fragoso

Charlie Ma

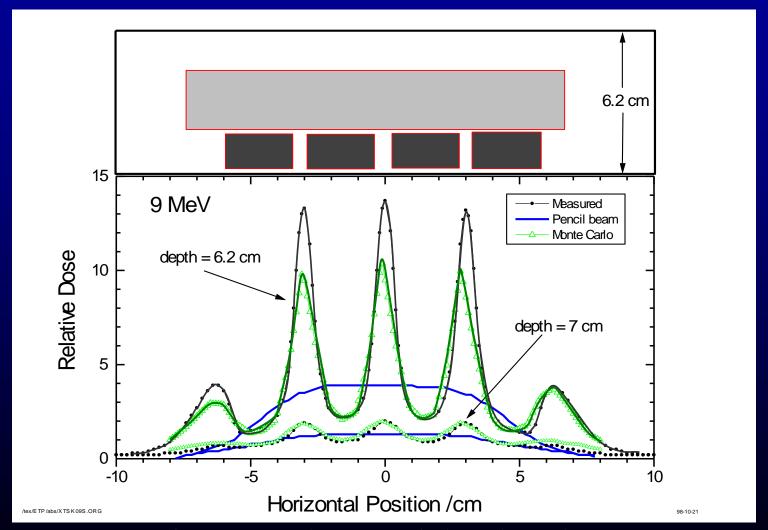
Eric Vandervoort

Neelam Tyagi

David W.O. Rogers

I have received research support from Nucletron and Varian.

TOHCC has a research agreement with Elekta.


I hold a research grant from Elekta



### Thank You



### Rationale for Monte Carlo dose calculation for electron beams





### Timing - Nucletron TPS Oncentra 4.0

Anatomy - 201 CT slices Voxels 3 mm<sup>3</sup> 10x10 cm<sup>2</sup> applicator 50k histories/cm<sup>2</sup>

System-

Manufacturer: Hewlett-Packard Company

Model: HP Z800 Workstation

Rating:

6,1 Windows Experience Index

Processor: Intel(R) Xeon(R) CPU E5520 @ 2.27GHz 2.26 GHz

Installed memory (RAM): 12.0 GB

System type: 64-bit Operating System

#### 4 MeV Timer Results:

Init = 0.321443 seconds

Calc = 42.188 seconds

Fini = 0.00158201 seconds

Sum = 42.5111 seconds

#### 20 MeV Timer Results:

Init = 0.311014 seconds

Calc = 110.492 seconds

Fini = 0.00122603 seconds

Sum = 110.805 seconds



### Timing - Varian Eclipse

Eclipse MMC, Varian single CPU Pentium IV

XEON, 2.4 GHz

10×10 cm<sup>2</sup>, applicator, water phantom,

cubic voxels of 5.0 mm sides

6, 12, 18 MeV electrons,

3, 4, 4 minutes, respectively

