Proton Treatment Planning: Double Scattering

Brian Winey, PhD Physicist, MGH Assistant Professor, HMS

Conflict of Interest

Funding received from NCI and Elekta.

Acknowledgements

Many at MGH and MDACC

What is our goal?

1. Enough radiation to kill all the tumor cells

2. ZERO radiation to any non-tumor cells.

Particles are best!

But, who has a particle accelerator?

Photons and Electrons

Bragg Peak

Bragg Peak

MASSACHUSETTS GENERAL HOSPITAL

RADIATION ONCOLOGY

мбн

- Bethe-Bloch Equation
- Energy dependent range

Scintillation Image

HARVARD

MEDICAL SCHOOL

Dose Comparisons

Spread Out Bragg Peak (SOBP)

Scintillation Image

- Multiple Methods to Create SOBP (Doesn't have to be flat!)
- Need an energy modulation system
- Synchrotron
- Binary absorbers systems
- Modulator Wheels
- Energy selection systems
- Reams of paper

HARVARD

MEDICAL SCHOOL

- Legos
- Etc.

Spread Out Bragg Peak (SOBP)

Scintillation Image

- Multiple Methods to Create SOBP (Doesn't have to be flat!)
- Need an energy modulation system
- Synchrotron
- Binary absorbers systems
- Modulator Wheels
- Energy selection systems
- Reams of paper
- Legos
- Etc.

Patient Specific Target

Works great for cube shaped tumors!

Patient and field specific hardware

Aperture

Lateral conformation

Range Compensator

Distal conformation

HARVARD

MEDICAL SCHOOL

Field specific dose delivery

Therefore...

Perfect Radiation Treatment!

Not the whole story...

Uncertainties!

- Range:
 - Physics
 - Anatomy
 - Setup
 - CT
 - Motion
- Scattering
- Calibrations

Range Uncertainties:

Source of range uncertainty in the patient	Range	Range	
	uncertainty	uncertainty with	
Estimates excluding worst cases!	without Monte	Monte Carlo	
	Carlo [% or mm]	[% or mm]	
Independent of dose calculation:			
Measurement uncertainty in water for commissioning	$\pm 0.3 \text{ mm}$ $\pm 0.3 \text{ mm}$		
Compensator design	± 0.2 mm	± 0.2 mm	
Beam reproducibility	± 0.2 mm	± 0.2 mm	
Patient setup	± 0.7 mm	± 0.7 mm	
Dose calculation:			
Biology (always positive) ^	$+ \sim 0.8\%^{1}$	$+ \sim 0.8\%^{1}$	
CT imaging and calibration	± 0.5%	± 0.5%	
CT conversion to tissue (excluding I-values)	$\pm 0.5\%^{a}$	± 0.2% ^c	
CT grid size	± 0.3%	± 0.3%	
Mean excitation energy (I-values) in tissues	$\pm 1.5\%^{b}$	± 1.5% ^b	
Range degradation; complex inhomogeneities (negative)	- 0.7% ^d	± 0.1 %	
Range degradation; local lateral inhomogeneities *	$\pm 2.5\%^{e}$	± 0.1 %	
Total (excluding *, ^)	2.7% + 1.2 mm	2.4% + 1.2 mm	
Total (excluding ^)	4.6% + 1.2 mm	2.4% + 1.2 mm	

^a (Schaffner and Pedroni, 1998)

^b (ICRU, 1993; Bichsel and Hiraoka, 1992; Kumazaki et al., 2007)

^c (Espana Palomares and Paganetti, 2010)

^d (Sawakuchi *et al.*, 2008; Bednarz *et al.*, 2010; Urie *et al.*, 1986)

e (Bednarz et al., 2010)

^f (Paganetti and Goitein, 2000; Robertson et al., 1975; Wouters et al., 1996)

Downside of Distal Edge

Proton range changes

- Breathing motion
- Lung density changes
 - Sub-clinical pneumonitis
- Patient weight gain / loss
- Fluids in sinuses

Lei Dong, Ph.D.

- Non-reproducible arm positions
- Setup Uncertainties

Large Lung Tumors Can Shrink During Treatment

Range Variations with Breathing

0% Phase RL D=11.18 R=10.68 PA D=12.28 R=8.75 50% Phase

RL D=11.20 R=10.96 PA D=12.21 R=10.01

MASSACHUSETTS

GENERAL HOSPITAL RADIATION ONCOLOGY

мсн

HARVARD MEDICAL SCHOOL

Chest Wall thickness varies during respiration affecting a large region

GTY Chen, Ph.D.

Radiotherapy in lung

Photons

Protons

Range sensitivity

мсн

Intrafractional Motion

Setup Uncertainty

MC

XiO

Perils Due to MCS

- Range Uncertainties, especially along a heterogeneous boundary
- Motion Uncertainties in Heterogeneous Materials
- Differences in Output, PDD, and Penumbra compared to Photons

Field Size Effects: MCS

Penumbra

Penumbra:

- Sharper at Shallow Depths
- More Sensitive to Setup Uncertainty
- Less Sharp at Greater Depths

Calibrations

- Some centers measure all field outputs: dependent on range, mod, field size, aperture, range compensator, patient scatter
- Model based: Kooy, et al, PMB 2005

INSTITUTE OF PHYSICS PUBLISHING

Phys. Med. Biol. 50 (2005) 5847-5856

The prediction of output factors for spread-out proton Bragg peak fields in clinical practice

> Hanne M Kooy¹, Stanley J Rosenthal¹, Martijn Engelsman¹, Alejandro Mazal², Roelf L Slopsema¹, Harald Paganetti¹ and Jacob B Flanz¹

> > HARVARD

MEDICAL SCHOOL

Calibrations

$$\Psi(r) = \frac{\text{CF} \times \Psi_c \times D_{0,c}}{100/(1+a_0 r^{a_1})}$$

$$\Psi'(R, M) = (s_0 + s_1(R - R_L)) \times \Psi(r)$$

Option	<i>a</i> ₀	<i>a</i> ₁	CF	<i>s</i> 0	<i>s</i> ₁	R _L	RMS (%)
B3	0.3375	0.7405	0.9970	0.963	0.0196	7.49	2.5
B4	0.3667	0.6963	1.0234	0.946	0.0208	9.55	3.5
B5	0.3552	0.6081	0.9532	0.928	0.0218	11.65	1.4
B6	0.2338	0.8990	1.0549	0.986	0.0070	15.54	0.6
B7	0.1461	0.7843	1.1849	0.952	0.0090	19.83	1.7

Treatment Planning Perspectives

- What do we do with all of this information:
 - Margins: Distal/Proximal and Lateral
 - Beam angle selection
 - Smearing
 - Feathering
 - Gating
 - OARs

Typical Planning (DS): Range Uncertainty

Beam Angle Selection

Two Case Examples: Which beam angles would you use?

Beam Angle Selection

1. Avoid beam entrance angles along and through heterogeneous boundaries

- 2. Avoid distal edge sparing.
- 3. Use multiple beams to reduce uncertainty of a single beam!

Typical Planning (DS): Setup Uncertainty

Smearing the range compensator

Gating

 Gating can greatly reduce the range uncertainties of targets close to the diaphragm where motion is typically the greatest

OARs

- AVOID distal edge sparing!
- If unavoidable, use multiple fields to spread the risk and reduce the dose to the OAR if there is an error.

Plan Examples: Protons versus Photons

Multiple Atypical Meningioma

Sacral Sarcoma

Martijn Engelsman, Ph.D.

HARVARD MEDICAL SCHOOL

Ideal Motion Scenario

- Perfect Tracking of the CTV
- No Interplay
- Complete knowledge of range variations: intrafraction and interfraction

Ideal Lung Scenario

Large Margins: Range, Motion, Smearing

Liver Motion

HARVARD MEDICAL SCHOOL

Complex Geometries

Double Scattering has trouble with concave geometries

Patching

Conclusions

- Distal Danger!
 - Range uncertainties: OARs, Motion (Breathing and otherwise)
- Use Appropriate Margins (Distally, Proximally and Laterally) and Smearing
- Use Beam Angles that minimize heterogeneous boundaries and range variations
- Use Beam angles that minimize distal edge sparing
- Beware of Small Fields-difficult to measure and model
- Use Multiple beams to reduce risk
- Understand your patient setup and immobilization

