CLINICAL APPLICATIONS OF SURFACE IMAGING SYSTEMS

Hania Al-Hallaq, Ph.D. Assistant Professor Radiation Oncology The University of Chicago ***No disclosures***

Learning Objective

- 1. Learn to incorporate QA for surface imaging into current QA procedures for IGRT.
- 2. Understand the advantages and limitations of surface imaging for clinical use in breast radiotherapy and cranial radiosurgery.
- 3. Learn about the potential use of surface imaging for real-time motion tracking.

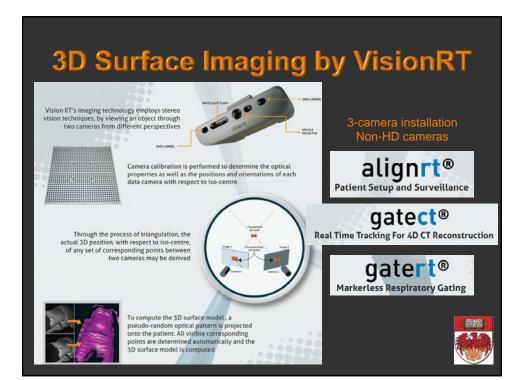
Learning Objective

- Integrate surface imaging isocenter congruence testing into current IGRT QA
- Describe the commissioning process of surface imaging systems for whole breast radiotherapy

Learning Objective

- Integrate surface imaging isocenter congruence testing into current IGRT QA
- Describe the commissioning process of surface imaging systems for whole breast radiotherapy

Acceptance: Isocenter Coincidence


 "If individual errors are small by themselves, cumulative system accuracy for the procedure can be significant and needs to be characterized through an end-to-end test using phantoms with measurement detectors and imaging" (TG-101)

TG-142: Imaging & Treatment Isocenter Coincidence

Collision interlocks	Functional	Functional
Positioning/repositioning	⇒2 mm	≤1 mm
Imaging and treatment coordinate coincidence (single gantry angle)	≤2 mm	≤1 mm
Cone-beam CT (kV and MV)		
Collision interlocks	Functional	Functional
Imaging and treatment coordinate coincidence	≤2 mm	≤1 mm
Positioning/repositioning	≤1 mm	≤1 mm
	Monthly	
Planar MV imaging (EPID)		
Imaging and treatment coordinate coincidence (four cardinal angles)	≤2 mm	≤1 mm
Scaling ^b	≤2 mm	≤2 mm
Spatial resolution	Baseline	Baseline
Contrast	Baseline	Baseline
Uniformity and noise	Baseline	Baseline
Planar kV imaging ^d		
Imaging and treatment coordinate coincidence (four cardinal angles)	≤2 mm	≤1 mm
Scaling	≤2 mm	≤1 mm
Spatial resolution	Baseline	Baseline
Contrast	Baseline	Baseline
Uniformity and noise	Baseline	Baseline
Cone-beam CT (kV and MV)		
Geometric distortion	≤2 mm	≤1 mm
Spatial resolution	Baseline	Baseline
Contrast	Baseline	Baseline
HU constancy	Baseline	Baseline
Uniformity and noise	Baseline	Baseline

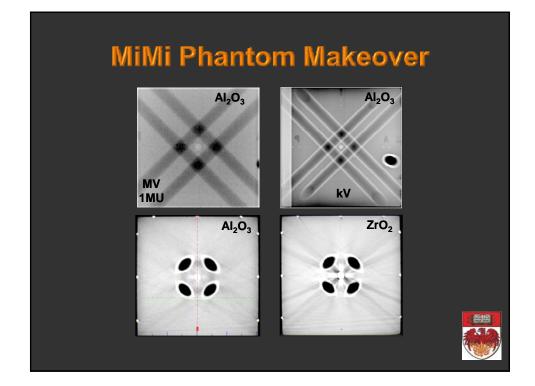
IGRT QA Goals

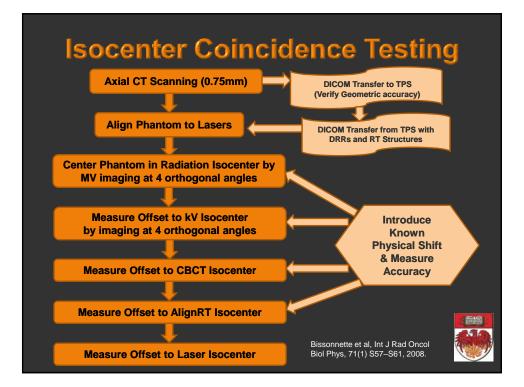
- To develop an end-to-end test to characterize isocenter coincidence:
 - Planning CT
 - MV
 - kV
 - CBCT
 - Surface imaging

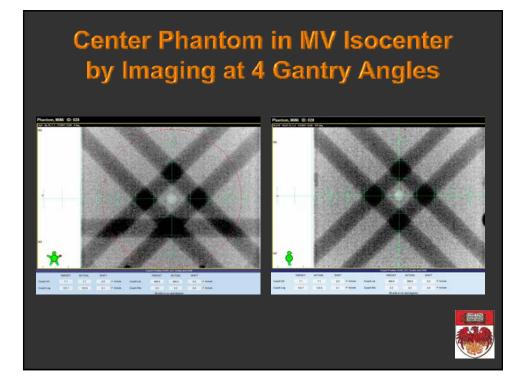
Multiple Imaging Modality Isocentricity (MiMi) Phantom from Standard Imaging

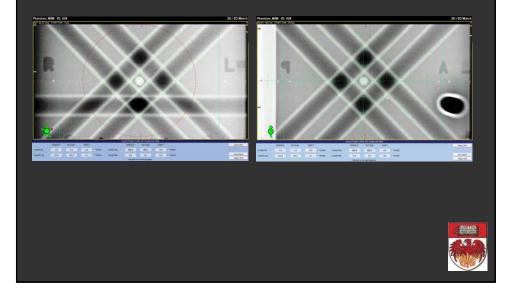
Easy Alignment due to Unique Design:

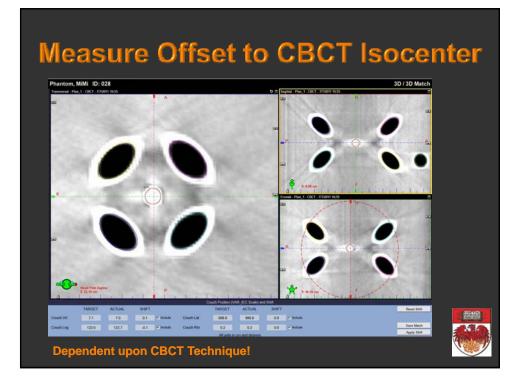
 "The MIMI Phantom incorporates five bone equivalent rods uniquely set so that four of them intersect at 90° angles when viewed in DRRs or a 2D projection image. The rods traverse the entire phantom making them visible in any image or slice allowing for easy 2D/2D and 3D/3D matching for fast verification of isocenter position."

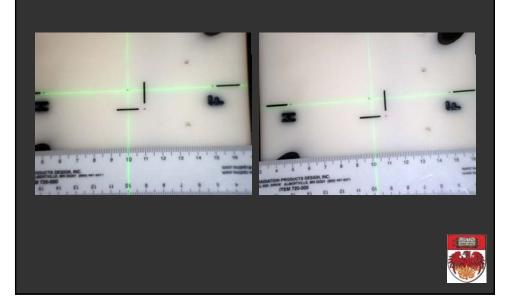

Test Integrated System Accuracy of:

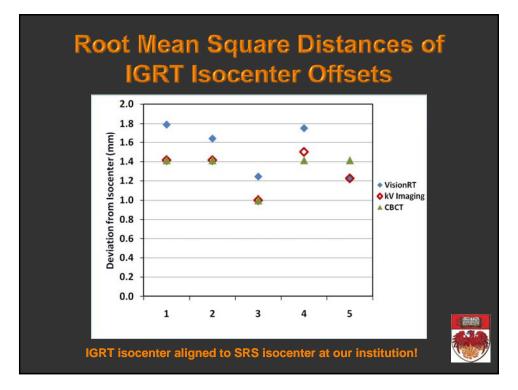

- 3D Cone Beam CT
- MV/kV x-ray
- Lasers and Couch Table Adjustments
- Optical Guidance Systems


MiMi Phantom Makeover



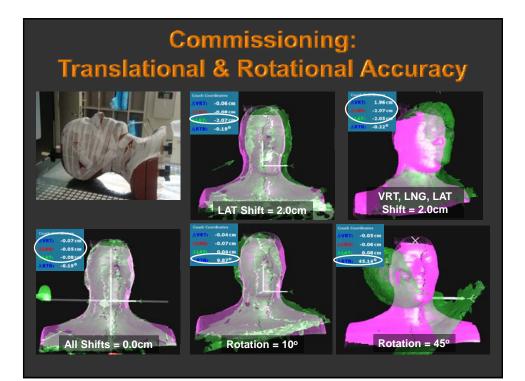





Measure Offset to kV Isocenter by 2D/2D Match at 4 Angles

Measure Offset to Laser Isocenter

Learning Objective


- Integrate surface imaging isocenter congruence testing into current IGRT QA
- Describe the commissioning process of surface imaging systems for whole breast radiotherapy

Commissioning

Commissioning tests should be developed by the institution's physics team to explore in detail every aspect of the system with the goal of developing a comprehensive baseline characterization of the performance of the system." (TG-101)

APPENDIX D PERFORMANCE AND ACCURACY CLAIMS	
Accuracy	
3D surface data: Root Mean Square (RMS) error ⁴ of surface data <mark>< 1mm</mark>	"As validated on rigid
Positioning occuracy: RMS target registration error ⁵ (TRE) <1mm	torso mannequin. Note: on importing
FSD measurement: RMS error ⁶ < 2mm	DICOM RT data as reference surface, VisionRT accepts no
Contour extraction for 3D planning: RMS error of skin contour data < 1mm Dosimetric errors ² for breast planning < 2%	responsibility for the accuracy of such data which may be affected
Calibration Drift:	by data resolution and breathing artefacts. Such
Typically ⁸ < 1mm per month	errors could influence
⁴ As validated on rigid torso mannequin; Note: on importing DICOM RT data as reference surface, Vision RT accepts no responsibility for the accuracy of such data which may be affected by data resolution and breathing artefacts. Such errors could influence positioning accuracy.	positioning accuracy."
³ As validated on rigid torso mannequin. Note: on humans, RMS TRE's on torso region <2mm additional errors caused by irregularity of different breathing cycles	
⁶ As validated on rigid torso mannequin and human subjects. It is important to note that the FSD measurement methods used to validate AlignRT were precise to not more than 2mm. Thus it is possible that the accuracy of FSD measurement in AlignRT to better than quoted above.	
⁷ Dose errors to the breast either side of the lung (7mm from back edge)	
⁸ This assumes that the cameras have not been knocked and that the building structure to which they are attached has not changed materially.	

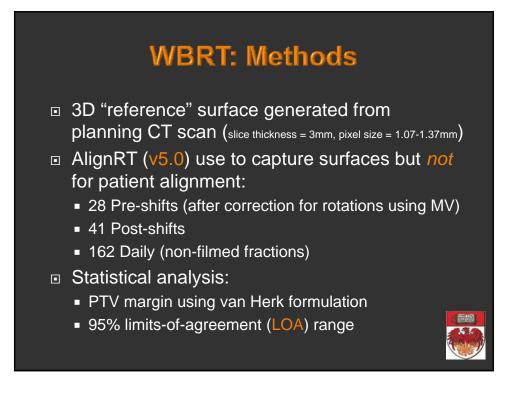
Commissioning: Whole-Breast RT

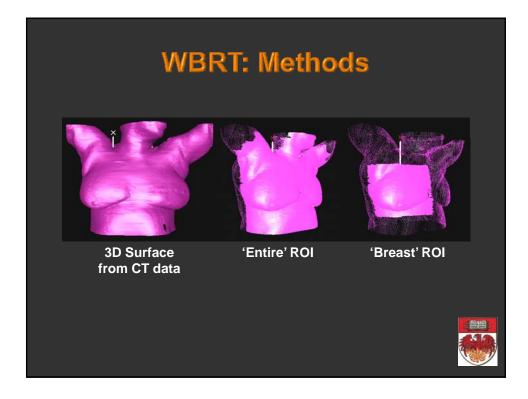
- While the patient's surface is a good surrogate for the target, the quality of 3D surface registration could be compromised by deformation
- We investigated the reliability of 3D surface matching using AlignRT compared to positioning using skin marks followed by MV portal imaging for whole-breast radiotherapy (WBRT)

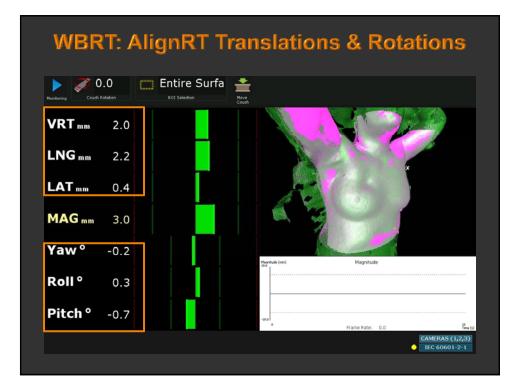
Commissioning: WBRT

- Absolute or Relative positioning?
- Absolute:
 - Use same DICOM surface throughout treatment
 - Reduce systematic errors?
 - Reduce frequency of filming?

Relative:


- Capture new reference surfaces
- Reduce intra-fraction errors?
- Relies on use of "other" IGRT modality




WBRT: Methods

■ 11 patients:

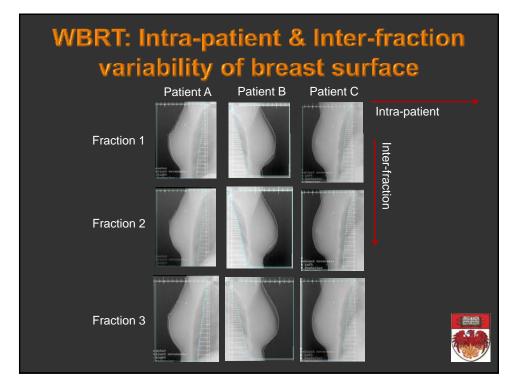
- Positioned supine with both arms above the head
- Immobilized on alpha cradle and slant board
- No respiratory gating
- Verification of breast positioning includes:
 - Setup to skin marks using lasers/tattoos daily
 - MV verification & alignment weekly
 - Orthogonal pair (AP & LAT)
 - Tangential portal images

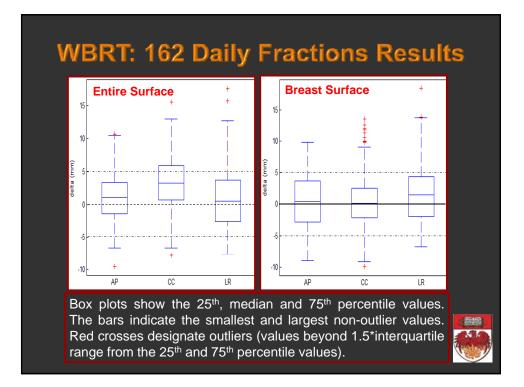
WBRT: Filmed Fractions Results

	Body mass index (kg/m2)
Median (range)	29 (23-36)
18.5-25 (normal)	3
> 25-30 (overweight)	4
> 30 (obese)	4

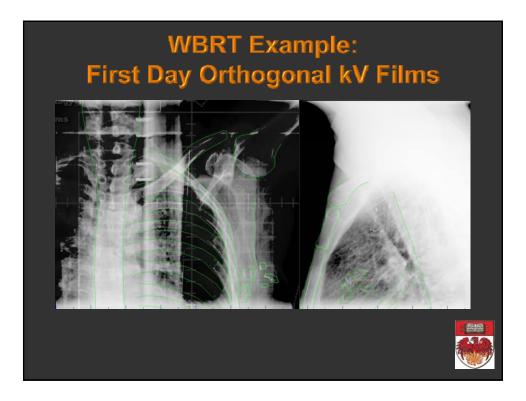
	PTV Margin (mm)			
	AP	CC	LR	
MV Films	5.4	13.4	12.1	
Entire surface Pre-Shifts	10.2	9.8	12.0	
Breast surface Pre-Shifts	9.2	8.3	10.9	

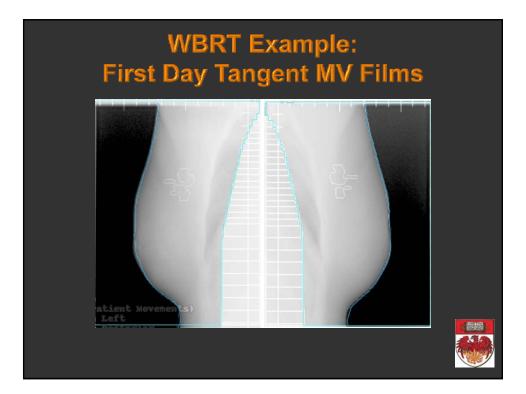
Results presented in Poster SU-E-J-56.

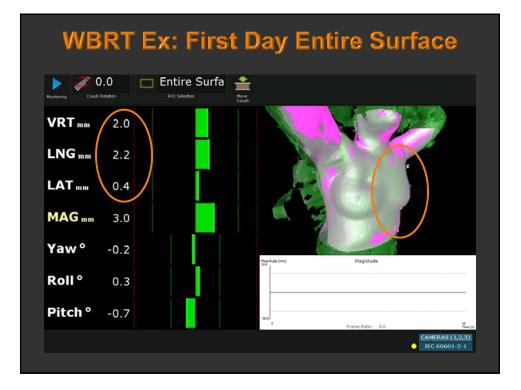

WBRT: Filmed Fractions Results

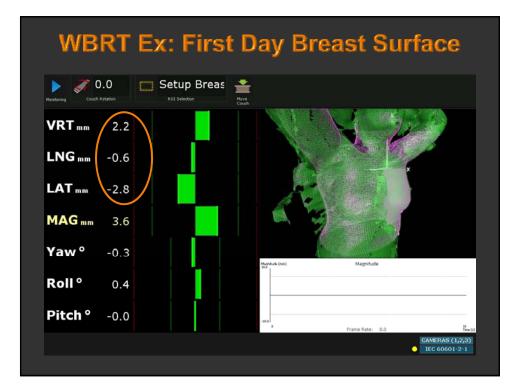

		LOA range (mm)			
		AP	CC	LR	
Pre-shifts	Entire Surface	12.8	21.1	15.5	
Pre-shints	Breast Surface	12.6	21.9	15.1	
Post-shifts	Entire Surface	9.8	13.6	14.8	
FUSI-SIIIIIS	Breast Surface	13.0	18.4	15.9	
Pearson's correlation coefficients					

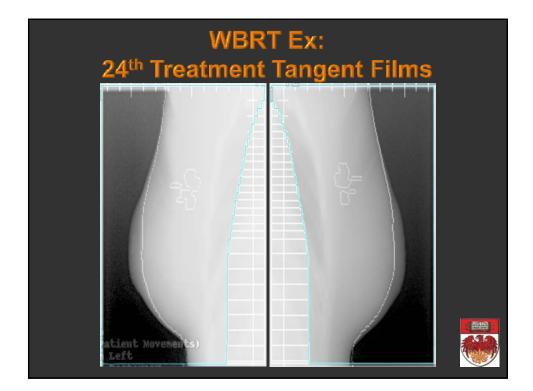
	Pearson's correlation coefficients			
	AP	CC	LR	
Entire surface	0.49	0.14	0.66	
Breast surface	0.47	-0.07	0.69	

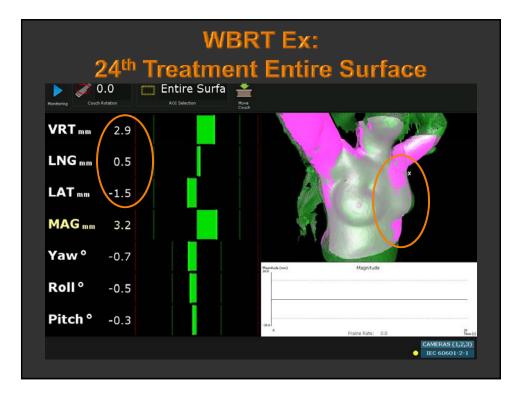

Results presented in Poster SU-E-J-56.

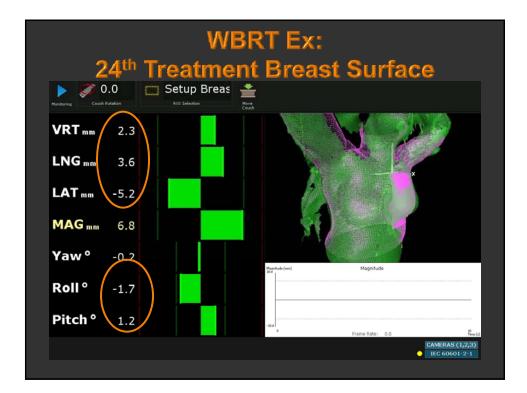


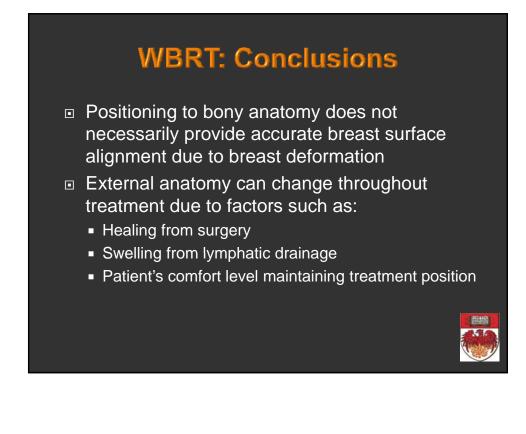


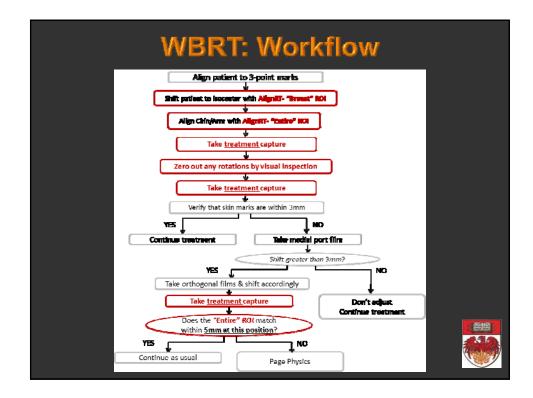


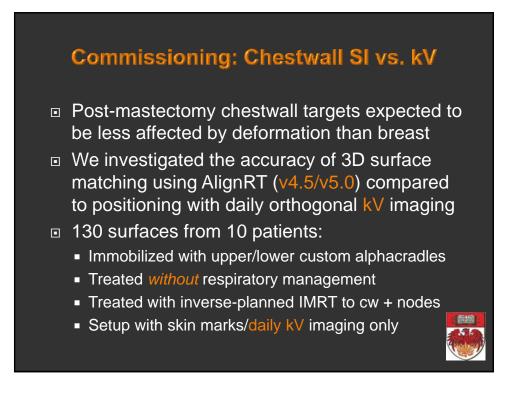

16

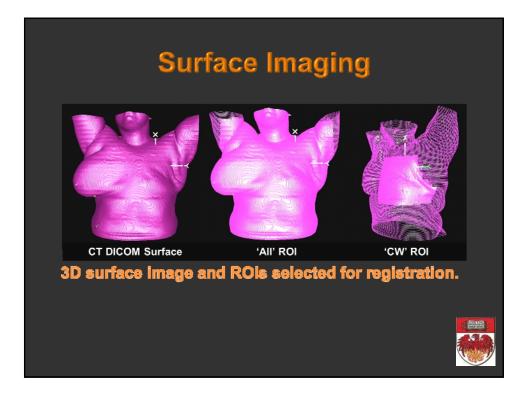


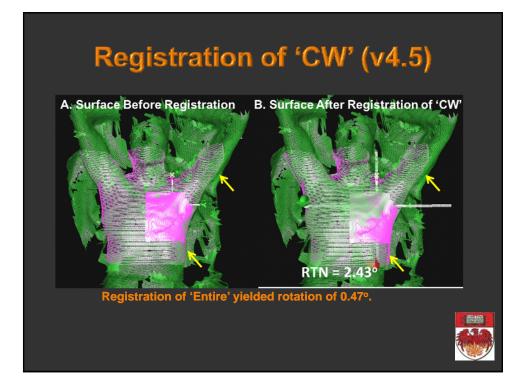


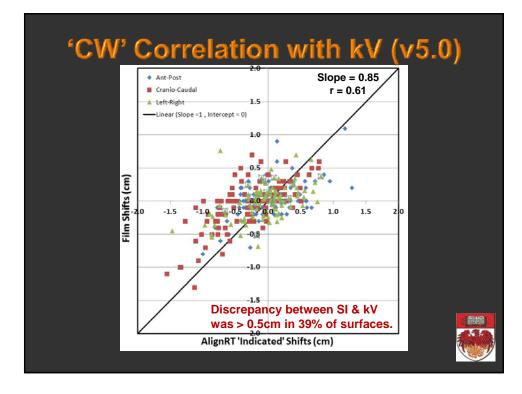


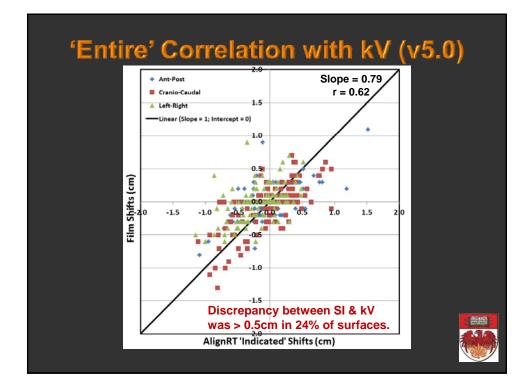






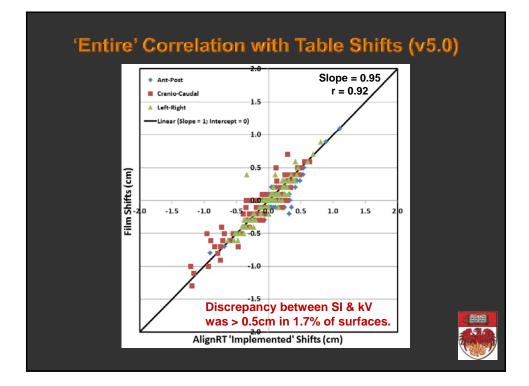




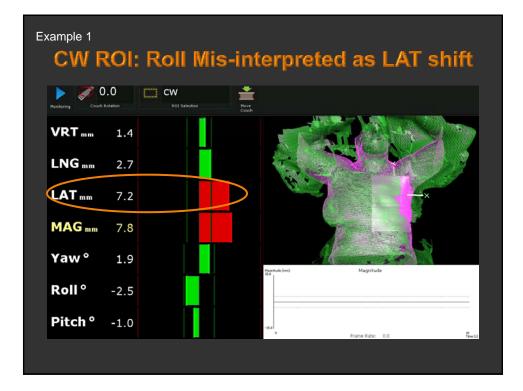


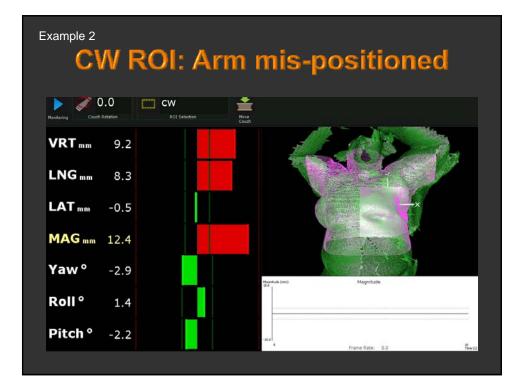
Identification of Unstable Registration

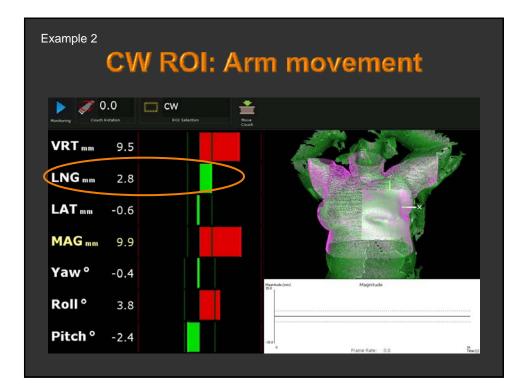
- Rotational (yaw) changes > 1° between consecutive surfaces:
 - 2.3% of 'Entire' surfaces
 - 3.8% of 'CW' surfaces
- Rotational (yaw/roll/pitch) changes > 1° between consecutive surfaces:
 - 5.6% of 'Entire' surfaces
 - 13.1% of 'CW' surfaces

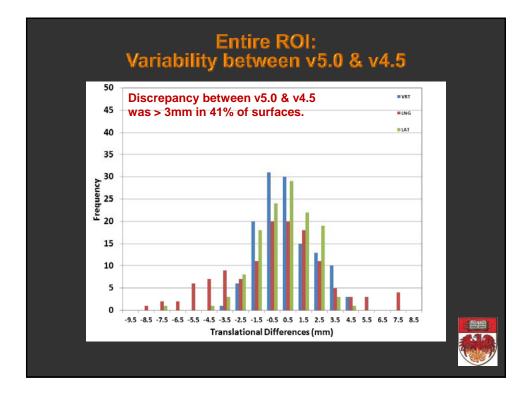


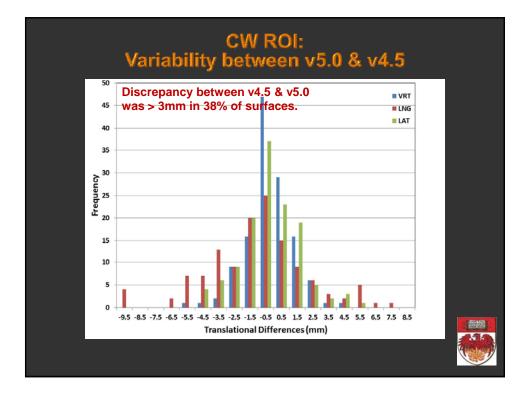
CW: Filmed Fractions Analysis


	PTV Margin (mm)			
	AP	CC	LR	
kV Films	4.2	6.3	3.7	
Entire surface Pre-Shifts	8.1	9.1	6.7	
CW surface Pre-Shifts	8.6	12.2	9.3	


		LOA range (mm)			
		AP	CC	LR	
Pre-shifts	Entire Surface	11.5	12.1	11.8	
	CW Surface	12.7	15.8	17.2	
Post-shifts	Entire Surface	11.8	11.0	10.9	
	CW Surface	12.8	15.4	16.1	


「製作





Chestwall RT: Conclusions

- Surface registration depends upon the ROI
- A smaller ROI ('cw') showed:
 - Larger LOA range compared to kV shifts
 - Less stability when calculating rotations
- Before clinical implementation:
 - Reconcile frequent mismatch (20-40%) between kV & AlignRT shifts > 0.5cm
 - Identify "unstable" registrations (4-13%)
 - Distinguish translations from deformations

	Dearcon's a	orrelation o	oofficiants
v5.0	AP	CC	LR
Entire surface	0.62	0.70	0.50
CW surface	0.58	0.66	0.38
	Pearson's c	orrelation c	oefficients
v4.5	AP	CC	LR
Entire surface	0.65	0.38	0.52
Entire surface		0.66	0.44
CW surface	0.65	0.00	0.11

Commissioning: Conclusions

- Surface imaging systems must undergo extensive acceptance testing & commissioning
- Isocenter congruence must be verified for all imaging modalities simultaneously
- Comprehensive testing of AlignRT revealed registration differences between v5.0 & v4.5
- Commissioning of AlignRT indicates that discrepancies are larger for:
 - Registration to CT reference surface
 - Registration of smaller ROIs

Surface Imaging for Breast Cancer

- Advantages of surface imaging:
 - 3D modality
 - Real-time monitoring
 - No radiation dose
 - Highlights surface changes (with absolute reference)
- Disadvantages of surface imaging:
 - Variations with ROI used for registration
 - Sensitive to deformation/difficult to interpret
 - Low correlation with MV films

X-ray Imaging for Breast Cancer

Advantages of MV/kV:

- Focuses only on bony anatomy
- Better surrogate for nodal treatment?
- Disadvantages of MV/kV:
 - 2D modality
 - Limited field-of-view
 - Radiation dose

Disadvantages of MV:

- Low contrast
- Subjectivity of alignment

<section-header><section-header><list-item><list-item><list-item><list-item><list-item>

Does SI offer benefits other than positioning accuracy?

- Reduce filming frequency
 - Requires *absolute* positioning?
- Improve patient safety
 - Particularly for multiple isocenter treatments
- Improve intra-fraction positioning
 - Real-time monitoring throughout treatment
- Improve throughput?

n=50	Before AlignRT	AfterAlignRT	
% of Patients with shifts < 1cm	64%	92%	
% of Patients with shifts < 1cm; total time < 30mins	44%	72%	: 部
			18
			9

IGRT with Surface Imaging

 "Variability in repositioning is dominated by the ability of therapists to make small, controlled changes in the position of the patient."

(Milliken et al., Int J Rad Onc Biol Phys, 38(4):855-866, 1997)

- Surface imaging does not preclude need for:
 - Good immobilization
 - Adequate PTV margins
 - Common sense!

Physicists:

Kamil Yenice, Ph.D. Laura Padilla, Ph.D. Hyejoo Kang, Ph.D. Karl Farrey, M.S. Bulent Aydogan, Ph.D. Chuck Pelizzari, Ph.D. Emily Gerry

Physicians:

Steven Chmura, M.D., Ph.D. Yasmin Hasan, M.D.

