Clinical Applications of Surface Imaging

Frameless (Maskless, Bite-blockless) Intracranial Radiosurgery

Laura Cervino / Grace Gwe-Ya Kim
University of California San Diego
Department of Radiation Medicine and Applied Sciences

AAPM 55th Annual Meeting, August 5, 2013

Disclosure

- Work partially supported by VisionRT
Background:
Intracranial Stereotactic Radiosurgery

- Total prescribed doses: order of \(10 - 50\) Gy
- Planning targets are small: from 1 to 35 cm\(^3\).
- Positional and numerical accuracy in dose delivery are ±1mm and ±5\%, respectively.
- Accurate determination of the target volume and its location with stereotactic techniques.
- Conformal Dose distributions: sharp dose fall-off outside the target volume.
- Accurate knowledge of the total dose and fractionation scheme required for treatment of a particular disease.
Background:
SRS Frame and fiducial markers

Goals of frameless SRS/SRT

- Patient comfort
- Ease of treatment
- Similar or better accuracy of positioning
- Potential for hypofractionated treatments
Advanced Techniques

- IGRT techniques for accurate patient positioning / monitoring
 - Radiographic localization
 - Non-radiographic localization

- Better precision of hardware in treatment machine
 - High precision mechanics (Couch, Gantry, MLC etc.)
 - Full automatic 6DOF couch
 - Manual Head Adjuster for 3D rotation

Frameless (Maskless, Bite-blockless) SRS

- Real-time setup and monitoring
 - VisionRT surface imaging

- Immobilization approaches

[Passive, Minimally Active]
AlignRT System

- **Stereo photography**
 - 3 cameras & visible light projector
 - Reference image = Contours from DICOMRT, Previous AlignRT image

- **Registration algorithm**
 - Minimize distance between reference image and real-time surface
 - Rotations & translations

Initial System Testing

- **Compare**
 - AlignRT monitoring
 - Zmed monitoring

- **Observe motion due to couch movements**
 - Use calibration SRS phantom with ZMed
 - Use Rando head phantom with AlignRT

Cervino et al. Phys Med Biol. 2010
Initial System Testing

Results: Translations

<table>
<thead>
<tr>
<th>Test no</th>
<th>Vertical motion (mm)</th>
<th>Long. motion (mm)</th>
<th>Lateral motion (mm)</th>
<th>Vert. difference (mm)</th>
<th>Long. difference (mm)</th>
<th>Lateral difference (mm)</th>
<th>Vector difference (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>−0.1</td>
<td>36</td>
<td>0.7</td>
<td>0.8</td>
<td>0.2</td>
<td>0.4</td>
<td>1.18</td>
</tr>
<tr>
<td>2</td>
<td>−20.7</td>
<td>36</td>
<td>0.5</td>
<td>0.2</td>
<td>0.2</td>
<td>0.6</td>
<td>1.00</td>
</tr>
<tr>
<td>3</td>
<td>−20.5</td>
<td>36</td>
<td>19.1</td>
<td>0.1</td>
<td>0.2</td>
<td>1.0</td>
<td>1.14</td>
</tr>
<tr>
<td>4</td>
<td>−20.7</td>
<td>36</td>
<td>−21.1</td>
<td>0.2</td>
<td>0.4</td>
<td>0.8</td>
<td>1.18</td>
</tr>
<tr>
<td>5</td>
<td>0.1</td>
<td>−0.1</td>
<td>−18.9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.4</td>
<td>0.63</td>
</tr>
<tr>
<td>6</td>
<td>−0.1</td>
<td>−0.1</td>
<td>−19.5</td>
<td>0.0</td>
<td>0.1</td>
<td>0.4</td>
<td>0.71</td>
</tr>
<tr>
<td>7</td>
<td>−0.2</td>
<td>−0.3</td>
<td>0.6</td>
<td>0.2</td>
<td>0.1</td>
<td>0.3</td>
<td>0.77</td>
</tr>
<tr>
<td>8</td>
<td>0.1</td>
<td>−0.4</td>
<td>20.9</td>
<td>0.2</td>
<td>0.1</td>
<td>0.4</td>
<td>0.84</td>
</tr>
<tr>
<td>9</td>
<td>−20.7</td>
<td>36.7</td>
<td>21.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.6</td>
<td>0.95</td>
</tr>
</tbody>
</table>

Difference in motions detected by Zmed and AlignRT
(Average = 0.93mm)

Cervino et al. Phys Med Biol. 2010

Initial System Testing

Results: Rotations

<table>
<thead>
<tr>
<th>Couch angle</th>
<th>90 deg.</th>
<th>45 deg.</th>
<th>315 deg.</th>
<th>270 deg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vert. (mm)</td>
<td>0.4</td>
<td>0.2</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>Lat. (mm)</td>
<td>0.6</td>
<td>0.3</td>
<td>0.4</td>
<td>0.6</td>
</tr>
<tr>
<td>Lng. (mm)</td>
<td>0.8</td>
<td>0.8</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>Head yaw (°)</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Head pitch (°)</td>
<td>0.1</td>
<td>0.0</td>
<td>0.3</td>
<td>0.7</td>
</tr>
<tr>
<td>Head roll (°)</td>
<td>1.0</td>
<td>0.3</td>
<td>0.1</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Cervino et al. Phys Med Biol. 2010
Other publications

- Detecting shifts with a torso phantom
 - Sub-millimeter accuracy (0.75 mm) for the 3 translational degrees of freedom and less than 0.1° for each rotation
 - Bert et al. Med Phys. 2005

- Detecting shifts with a head phantom
 - 1D motion detection was 0.1 mm±0.1 mm, dependent on the CT skin definition with ~0.4 mm variation
 - Li et al. Med Phys. 2011

UCSD FMB Procedure

1. CT Simulation
 - Patient Simulation
 - Create mask & head cushion

2. Planning
 - Plan and isocenter
 - Create body contour

3. FMB Image registration
 - Importing plan & body contour
 - Select ROI

4. Initial setup
 - Manual head adjuster
 - Start from bridge of nose

5. Capturing new-reference Image
 - CBCT image registration
 - Capture new reference surface

6. Treatment
 - Monitoring
 - Adjust if needed
Equipment

- Varian TrueBeam
- Varian Eclipse V10
- AlignRT V 5.0.517 with HD Camera
- Manual Head Adjuster
- Daily QA phantom
- Monthly QA phantom

CT Simulation

Not a real patient

<table>
<thead>
<tr>
<th>Tx Site / Technique</th>
<th>Mask Type</th>
<th>Immobilizers</th>
<th>Setup</th>
</tr>
</thead>
</table>
| Brain / FMB | Open Mask with S-frame | - "B" Headrest
- Custom head cushion
- Pad on the table
- Kneefix w/ 1 insert
- Hands on abd. with ring | Patient to keep their chin down
Align at Midline on the Brain
Scan Protocol: SRS (Slice size: 1.25 mm) |
FMB Planning

- Body contour
- Resolution of target structure
- Smaller calculation grid size
- Origin @ bridge of nose (shift information to isocenter)
- PTV margin info @ setup note
- Documenting AP/LAT BEV (Body contour) with graticule
- Plan evaluation

Treatment: Initial Positioning

100 cm SSD for setup
Patient setup

Initial setup: moves from the bridge of nose with given shift numbers

Two therapists: one looks after rotations another after shifts
Patient setup

Target: < 0.5 mm, < 0.5 °

Capture new reference

- Co-registration to CBCT approved by a radiation oncologist
- New reference surface after CBCT-based shifts
- Expect small deviations
Treatment, Real time monitoring

- Beam-off if out of tolerance (depends on setup margin)

General Tolerance
- Any translational < 1mm
- Any rotations < 1°
- 3D MAG < 1.0 mm

Treatment, Couch rotation
Treatment, Couch rotation

Example Case
Example Case

![Diagram showing deviation over elapsed time with couch rotation at 45 degrees and 315 degrees, labeled as Arc 1 and Arc 2, respectively.]

Daily QA, Cal. Board

- Board with distinct pattern
- 100 cm SSD, Align with cross-hair
- Verification of camera calibration
Daily QA, Cal. Board

Calibration verification successful, RMS error 0.2mm.

Daily QA, Cal. Board – recalibration if needed
Daily QA, QA Phantom

- Level and set to lasers
- Precisely setup with AlignRT
- Test plan with deliberate shift 1 cm in each direction
- Verify with kV/kV, CBCT and MV

Daily QA, QA phantom

- Matching to fiducials has to show 10 mm shifts in each direction
- End-to-End test tolerance +/- 1.5 mm
- kV/kV + CBCT, move couch from CBCT, MV orthogonal pair
Daily QA, QA Phantom

- After couch moves Align RT report required shifts
- Have to match 10 mm shifts made
- This completes the loop including shifts seen by Align RT

Monthly QA, Hidden target

- Align RT phantom setup
- Monthly QA procedure
- Hidden target testing
Monthly QA, Hidden target

Clinical Results

- **44 patients**
 - 115 intracranial metastases

- **Median follow-up of 4.7 months**
 - 1 year actuarial local control rate was 84%
 - 95% confidence interval: 69-99%

Pan et al. Neurosurgery, 2012, 71 (4) : 844-852
Clinical Results

Comparison of local control & survival for retrospective studies of brain metastases treated with radiosurgery

<table>
<thead>
<tr>
<th>Treatment System</th>
<th>Pts (n)</th>
<th>Actuarial 1y LC* (%)</th>
<th>Actuarial 1y Survival (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame-based linac</td>
<td>80</td>
<td>89</td>
<td>33</td>
</tr>
<tr>
<td>Frame-based Gamma Knife</td>
<td>205</td>
<td>71</td>
<td>37††</td>
</tr>
<tr>
<td>Frameless linac</td>
<td>53</td>
<td>80</td>
<td>44</td>
</tr>
<tr>
<td>Frameless linac</td>
<td>65</td>
<td>76</td>
<td>40</td>
</tr>
<tr>
<td>Frameless, surface-imaging guided linac</td>
<td>44</td>
<td>84</td>
<td>37</td>
</tr>
</tbody>
</table>

*LC: local control; †: not reported; ††estimated from Kaplan-Meier curve

Summary

- Frameless SRS treatments with surface imaging are able to achieve the required level of accuracy
- Accuracy and precision of the system could be improved and verified with updated hardware (HD camera, 6D couch etc.) and an optimized QA program
- UCSD has established FMB intracranial stereotactic radiosurgery as its sole SRS/SRT technique
Acknowledgement

Todd Pawlicki, Ph.D.
Steve Jiang, Ph.D.
Vitali Moiseenko, Ph.D.
Adam Paxton, Ph.D.

UCSD SRS TEAM
Kevin Murphy, M.D.
Parag Sanghvi, M.D.
Jona Hattangadi, M.D.
Clark Chen, M.D.
Grace Kim, Ph.D.
Jane Uhl, CMD