3D surface imaging for image guidance in Stereotactic body RT and deep inspiration breath hold RT for left-sided breast cancer

Jan-Jakob Sonke

Department of Radiation Oncology
The Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital
Disclosure

Research collaboration with:
- Elekta Oncology Systems
- VisionRT
- RaySearch Laboratories

Our department licenses software to:
- Elekta Oncology Systems
- Precision X-Ray Inc.
- Xstrahl Ltd.
Acknowledgements

Tanja Alderliesten
Anja Betgen
Rutger Heddes
Joeri Honnef
Corine van Vliet-Vroegindeweiij
Peter Remeijer
Lung SBRT Surveillance
Introduction

SBRT @ NKI-AVL

• 3 fractions of 18 Gy
• Immobilization:
 • Arm supports
 • Knee supports
• 4D-CBCT-guided correction protocol
• Initially non-coplanar IMRT, now VMAT
SBRT Lung: Pre-Alignment
SBRT Lung: Tumor Aligned
Residual Error after Correction

3 consecutive fractions
Intra-fraction Variability

3 consecutive fractions
Time is a significant predictor for both 3D vectors in a linear regression model (p<0.001)
Aim

Validate the use of a 3D surface imaging system for monitoring intrafraction motion in frameless SBRT of lung cancer by comparison with CBCT
Material and Methods

- Speckle projector
- Data camera
- Data camera

3D surface imaging system

Beam on/off detection*

* Black Cat Systems, Westminster, USA
Materials and Methods

- Correction protocol
 - Alignment to room lasers
 - (4D-)CBCT
 - Registration CBCT – Planning CT
 - Local rigid tumor alignment
 - Couch shift
 - (4D-)CBCT for verification
 - Treatment delivery
 - (4D-)CBCT to assess intrafraction variability

3D surfaces were captured during CBCT acquisition
Registrations

- Local rigid registration
 - Correlation ratio as cost function
- ROI
 - Clipbox: bony anatomy
 - Tumor mask (GTV + 5 mm)
 - Surface mask (side treated lung)

Materials and Methods

- **Data**

<table>
<thead>
<tr>
<th></th>
<th>Surface vs. CBCT clipbox</th>
<th>Surface vs. CBCT tumor</th>
<th>Surface vs. CBCT surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Females</td>
<td>41</td>
<td>41</td>
<td>32</td>
</tr>
<tr>
<td>Males</td>
<td>34</td>
<td>34</td>
<td>20</td>
</tr>
</tbody>
</table>

CBCT: surface was not always in field of view
Materials and Methods

- **Bland and Altman analysis – Measuring agreement**
 - Differences in Intrafraction Motion
 - Estimated bias: Mean
 - Random fluctuations: Standard deviation (SD)
 - 95% limits of agreement
 - Mean ± 1.96xSD

Also known as a Tukey mean-difference plot
• ROC analysis
 – Binary classifier system (predict: tumor movement ≥ threshold)
 – Point: sensitivity / specificity pair corresponding to threshold
Results

M, Σ, σ

<table>
<thead>
<tr>
<th>Δ intrafraction motion (mm)</th>
<th>Surface vs. CBCT clipbox</th>
<th>Surface vs. CBCT tumor</th>
<th>Surface vs. CBCT surface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3D</td>
<td>3D</td>
<td>3D</td>
</tr>
<tr>
<td>Females</td>
<td>M 1.7</td>
<td>0.8</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>Σ 1.6</td>
<td>1.8</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>σ 2.4</td>
<td>2.1</td>
<td>1.9</td>
</tr>
<tr>
<td>Males</td>
<td>M 1.9</td>
<td>1.3</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>Σ 3.1</td>
<td>3.2</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>σ 3.1</td>
<td>3.4</td>
<td>4.0</td>
</tr>
</tbody>
</table>
Results

- Bland and Altman analysis

<table>
<thead>
<tr>
<th>Δ intrafraction motion (mm)</th>
<th>Surface vs. CBCT clipbox</th>
<th>Surface vs. CBCT tumor</th>
<th>Surface vs. CBCT surface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3D</td>
<td>3D</td>
<td>3D</td>
</tr>
<tr>
<td>Females</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>1.8</td>
<td>0.9</td>
<td>0.3</td>
</tr>
<tr>
<td>SD</td>
<td>2.6</td>
<td>2.6</td>
<td>2.0</td>
</tr>
<tr>
<td>Mean-1.96xSD</td>
<td>-3.2</td>
<td>-4.2</td>
<td>-3.7</td>
</tr>
<tr>
<td>Mean+1.96xSD</td>
<td>6.8</td>
<td>5.9</td>
<td>4.3</td>
</tr>
<tr>
<td>Males</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>2.4</td>
<td>1.8</td>
<td>0.4</td>
</tr>
<tr>
<td>SD</td>
<td>3.8</td>
<td>4.1</td>
<td>4.1</td>
</tr>
<tr>
<td>Mean-1.96xSD</td>
<td>-5.1</td>
<td>-6.3</td>
<td>-7.5</td>
</tr>
<tr>
<td>Mean+1.96xSD</td>
<td>9.8</td>
<td>9.8</td>
<td>8.4</td>
</tr>
</tbody>
</table>

Results females more promising than results males
Results

- Bland and Altman plots (Females)

CBCT clipbox, CBCT tumor: discrepancy tends to increase with increasing intrafraction motion
Results

- ROC analysis (Females)

Surface vs. CBCT tumor

<table>
<thead>
<tr>
<th>Threshold (mm)</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>FN</td>
<td>6</td>
<td>7</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>FP</td>
<td>9</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>TP</td>
<td>23</td>
<td>15</td>
<td>9</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TN</td>
<td>3</td>
<td>11</td>
<td>20</td>
<td>27</td>
<td>32</td>
<td>34</td>
<td>38</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>FPR</th>
<th>TPR</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 mm</td>
<td>0.75</td>
<td>0.79</td>
</tr>
<tr>
<td>3 mm</td>
<td>0.42</td>
<td>0.68</td>
</tr>
<tr>
<td>4 mm</td>
<td>0.31</td>
<td>0.75</td>
</tr>
<tr>
<td>5 mm</td>
<td>0.25</td>
<td>0.60</td>
</tr>
<tr>
<td>6 mm</td>
<td>0.18</td>
<td>0.50</td>
</tr>
<tr>
<td>7 mm</td>
<td>0.15</td>
<td>0.00</td>
</tr>
<tr>
<td>8 mm</td>
<td>0.07</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Threshold 4 mm promising prediction model?

Intrafraction motion - CBCT tumor

<table>
<thead>
<tr>
<th>(mm)</th>
<th>LR</th>
<th>CC</th>
<th>AP</th>
<th>3D</th>
</tr>
</thead>
<tbody>
<tr>
<td>average</td>
<td>0.4</td>
<td>1.3</td>
<td>-0.8</td>
<td>3.1</td>
</tr>
<tr>
<td>min</td>
<td>-4.5</td>
<td>-1.1</td>
<td>-5.7</td>
<td>0.4</td>
</tr>
<tr>
<td>max</td>
<td>4.7</td>
<td>6.0</td>
<td>4.8</td>
<td>7.7</td>
</tr>
</tbody>
</table>

Alderliesten et al. R&O, 2012
Workflow SBRT Surveillance

1. Align patient to treatment isoc
2. Acquire CBCT scan
3. Register & correct
4. Acquire validation CBCT and simultaneous surface image
5. Determine correction difference and adjust surface isoc
6. Monitor Surface with 4 mm threshold
Introduction

Left-sided breast cancer radiation

- Increased risk for long term heart disease
To decrease the irradiated heart volume

- Voluntary deep inspiration breath hold (DIBH)
During inspiration*:
- Lung volume is increased
- Breast is moved craniocaudally
- Heart is moved caudally

Setup verification (DIBH)
 • CBCT (half scan protocol: 30 sec, arc of 200°)
 • Rigid registration CBCT – planning CT

Dose delivery
 • Lateral fields (DIBH)
 • Medial fields (DIBH)

Monitoring depth breath hold
 • kV fluoroscopy (IMRT segments)
 • MV fluoroscopy EPID (open fields)
Introduction

Disadvantages

- 2D
- Additional imaging dose
- kV source and kV imaging panel at 90 degrees to treatment line
- Monitoring with EPID not possible during IMRT segments
Purpose

Investigate the applicability of a 3D surface imaging system for image guidance in DIBH RT for left-sided breast cancer by comparison with CBCT
Purpose

Patient movement outside tolerance for 1 second
Materials and Methods

Patients (n=20)

- Left-sided breast cancer
- Breast conserving therapy
 - BCS
 - DIBH RT in treatment
 - WBI, n=1
 - SEQ, n=2
 - SIB, n=17
Registration

- Planning CT surface – captured 3D surface
 - Iterative closest point algorithm*
 - ROI defined on reference surface

Registration

• Planning CT– CBCT
 • Local rigid registration
 – Cost function: correlation ratio*
 • ROI defined on planning CT scan
 – Surface left side

Mean residual registration error (RRE)

- RMS distance between
 - planning CT surface (reference)
 - registered CBCT / AlignRT (target) surface

\[
\text{RRE} = \sqrt{\frac{1}{k} \sum_{i=0}^{k-1} \left| p_i^r - T(p_i^t) \right|^2}
\]

Where

- \(p_i^r \) denotes a point in the reference surface
- \(T(p_i^t) \) denotes a point in the transformed target surface
- \(k \) the number of points

- Mean residual setup error after setup correction and shape changes
Mean residual registration error (RRE)

- CBCT surface segmentation (thresholding and smoothing)*

* Honnef, J. et al. ESTRO, 2010
Bland and Altman analysis – Measuring agreement

• Difference between setup errors
 • Estimated bias:
 Mean
 • Random fluctuations:
 Standard deviation (SD)

• 95% limits of agreement
 • Mean±1.96xSD
ROC analysis

- Binary classifier system (predict: movement ≥ threshold)
- Point: sensitivity / specificity pair corresponding to threshold
Results

RRE

<table>
<thead>
<tr>
<th></th>
<th>AlignRT – Planning CT</th>
<th>CBCT – Planning CT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ROI: both sides</td>
<td>ROI: left side</td>
</tr>
<tr>
<td>RRE (cm)</td>
<td>nr of points</td>
<td>RRE (cm)</td>
</tr>
<tr>
<td>min</td>
<td>0.05</td>
<td>0.03</td>
</tr>
<tr>
<td>max</td>
<td>0.82</td>
<td>0.44</td>
</tr>
<tr>
<td>mean</td>
<td>0.23</td>
<td>0.19</td>
</tr>
<tr>
<td>stdev</td>
<td>0.13</td>
<td>0.09</td>
</tr>
</tbody>
</table>
Results

RRE

<table>
<thead>
<tr>
<th></th>
<th>AlignRT – Planning CT</th>
<th>CBCT – Planning CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROI: both sides</td>
<td>RRE (cm)</td>
<td>nr of points</td>
</tr>
<tr>
<td>min</td>
<td>0.05</td>
<td>92</td>
</tr>
<tr>
<td>max</td>
<td>0.82</td>
<td>526</td>
</tr>
<tr>
<td>mean</td>
<td>0.23</td>
<td>230</td>
</tr>
<tr>
<td>stdev</td>
<td>0.13</td>
<td>92</td>
</tr>
</tbody>
</table>

- Wilcoxon signed ranks test
 - AlignRT [ROI: left side] < CBCT < AlignRT [ROI: both sides] \(p<0.001 \)

- No time trends were observed for the RRE values
Results

Bland and Altman analysis

ROI: both sides

ROI: left side
Results

Bland and Altman analysis

<table>
<thead>
<tr>
<th>ROI</th>
<th>cm</th>
<th>LR</th>
<th>CC</th>
<th>AP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both sides</td>
<td>m</td>
<td>0.02</td>
<td>-0.08</td>
<td>-0.14</td>
</tr>
<tr>
<td></td>
<td>sd</td>
<td>0.31</td>
<td>0.30</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>m-1.96xsd</td>
<td>-0.59</td>
<td>-0.66</td>
<td>-0.57</td>
</tr>
<tr>
<td></td>
<td>m+1.96xsd</td>
<td>0.63</td>
<td>0.50</td>
<td>0.29</td>
</tr>
<tr>
<td>Left side</td>
<td>m</td>
<td>0.07</td>
<td>-0.01</td>
<td>-0.15</td>
</tr>
<tr>
<td></td>
<td>sd</td>
<td>0.21</td>
<td>0.21</td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td>m-1.96xsd</td>
<td>-0.34</td>
<td>-0.42</td>
<td>-0.52</td>
</tr>
<tr>
<td></td>
<td>m+1.96xsd</td>
<td>0.48</td>
<td>0.39</td>
<td>0.23</td>
</tr>
</tbody>
</table>

ROI left side tighter limits of agreement than ROI both sides
Results

ROC analysis (3D movement >= Threshold)

AlignRT surface (ROI: left side) vs CBCT surface

<table>
<thead>
<tr>
<th>Threshold (mm)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>FN</td>
<td>3</td>
<td>8</td>
<td>14</td>
<td>16</td>
<td>26</td>
<td>43</td>
<td>47</td>
<td>38</td>
</tr>
<tr>
<td>FP</td>
<td>1</td>
<td>6</td>
<td>11</td>
<td>6</td>
<td>23</td>
<td>22</td>
<td>31</td>
<td>26</td>
</tr>
<tr>
<td>TP</td>
<td>375</td>
<td>261</td>
<td>338</td>
<td>314</td>
<td>272</td>
<td>222</td>
<td>171</td>
<td>143</td>
</tr>
<tr>
<td>TN</td>
<td>0</td>
<td>4</td>
<td>16</td>
<td>43</td>
<td>58</td>
<td>92</td>
<td>130</td>
<td>172</td>
</tr>
<tr>
<td>FPR</td>
<td>1.00</td>
<td>0.60</td>
<td>0.41</td>
<td>0.12</td>
<td>0.28</td>
<td>0.19</td>
<td>0.19</td>
<td>0.13</td>
</tr>
<tr>
<td>TPR</td>
<td>0.99</td>
<td>0.98</td>
<td>0.96</td>
<td>0.95</td>
<td>0.91</td>
<td>0.84</td>
<td>0.78</td>
<td>0.79</td>
</tr>
</tbody>
</table>

Graphs

- **3D Setup Error (mm)**
 - Equation: \(y = 0.84x + 0.92 \)
 - \(R^2 = 0.74 \)

- **True Positive Rate vs False Positive Rate**

Results

ROC analysis (3D movement \(\geq\) Threshold)

<table>
<thead>
<tr>
<th>Threshold (mm)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>FN</td>
<td>3</td>
<td>8</td>
<td>14</td>
<td>16</td>
<td>26</td>
<td>43</td>
<td>47</td>
<td>38</td>
</tr>
<tr>
<td>FP</td>
<td>1</td>
<td>6</td>
<td>11</td>
<td>6</td>
<td>23</td>
<td>22</td>
<td>31</td>
<td>26</td>
</tr>
<tr>
<td>TP</td>
<td>375</td>
<td>261</td>
<td>338</td>
<td>314</td>
<td>272</td>
<td>222</td>
<td>171</td>
<td>143</td>
</tr>
<tr>
<td>TN</td>
<td>0</td>
<td>4</td>
<td>16</td>
<td>43</td>
<td>58</td>
<td>92</td>
<td>130</td>
<td>172</td>
</tr>
</tbody>
</table>

Performance Metrics

- **FPR (False Positive Rate)**
 - Threshold 4-8 mm: promising prediction model?

- **TPR (True Positive Rate)**
 - Threshold 4-8 mm: promising prediction model?

Graphs

- **3D Setup Error (mm)**

- **True Positive Rate vs False Positive Rate**

Alderliesten et al. IJROBP, 2013
Statistics on Discrepancies

M, Σ, σ in cm and R^2

<table>
<thead>
<tr>
<th>ROI</th>
<th>LR</th>
<th>CC</th>
<th>AP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both sides</td>
<td>M</td>
<td>0.04</td>
<td>-0.07</td>
</tr>
<tr>
<td></td>
<td>Σ</td>
<td>0.29</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>σ</td>
<td>0.14</td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td>R^2</td>
<td>0.33</td>
<td>0.79</td>
</tr>
<tr>
<td>Left side</td>
<td>M</td>
<td>0.08</td>
<td>-0.01</td>
</tr>
<tr>
<td></td>
<td>Σ</td>
<td>0.17</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>σ</td>
<td>0.13</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>R^2</td>
<td>0.70</td>
<td>0.90</td>
</tr>
</tbody>
</table>
Is the Surface an adequate surrogate for the Tumor Bed?

- 20 breast cancer patients
- Three registration methods:
 - Bony anatomy
 - Breast surface
 - Tumor bed
- Compare residual geometric uncertainties
Boost position variability – Surrogate accuracy

<table>
<thead>
<tr>
<th></th>
<th>No-correction</th>
<th>Bone</th>
<th>Surface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CC</td>
<td>LR</td>
<td>AP</td>
</tr>
<tr>
<td>M (mm)</td>
<td>1.4</td>
<td>0.2</td>
<td>−3.1</td>
</tr>
<tr>
<td>Σ (mm)</td>
<td>3.0</td>
<td>3.8</td>
<td>2.7</td>
</tr>
<tr>
<td>σ (mm)</td>
<td>2.6</td>
<td>3.2</td>
<td>2.9</td>
</tr>
<tr>
<td>Margin</td>
<td>8.3</td>
<td>10.6</td>
<td>7.7</td>
</tr>
</tbody>
</table>

Margin = 2.5Σ + 0.3σ

Topolnjak et al. IJROBP 2008
Relative Surface surrogate benefit

Topolnjak et al. IJROBP 2008
Is the Surface Correlated with the Heart Correlation

- **LR**
 - Equation: $y = 0.60x - 0.12$
 - $R = 0.56$, $R^2 = 0.31$

- **AP**
 - Equation: $y = 0.60x - 0.09$
 - $R = 0.68$, $R^2 = 0.47$

- **CC**
 - Equation: $y = 0.39x - 0.04$
 - $R = 0.62$, $R^2 = 0.38$

- **Planning CT - CBCT**
 - Equation: $y = 0.60x - 0.12$
 - $R = 0.56$, $R^2 = 0.31$
Workflow Breath-hold Monitor

- Align patient to treatment isoc
- Acquire validation CBCT and simultaneous surface image
- Register & correct
 - Determine correction difference and adjust surface isoc
 - Online / Offline
- Monitor Surface
 - PRV margin for the Heart
Conclusions

- Surface imaging promising for SBRT surveillance and breath-hold monitoring
- Male thorax is challenging
- Better integration with other imaging technology for internal anatomy required