Small-Field Dosimetry

Indra J. Das, PhD, FAAPM, FACR, FASTRO Department of Radiation Oncology Indiana University School of Medicine Indianapolis, IN, USA

Treatment Fields

Advance Therapy Fields
SRS/SRT
Gamma Knife
Cyber-Knife
Tomotherapy
IMRT

TG-155: Small Fields and Non-Equilibrium Condition Photon Beam Dosimetry

Indra J. Das (Chair) Indiana University School of Medicine, Indianapolis, IN 46202 **Paolo Francescon (Co-chair)** Ospedale Di Vicenza, Viale Rodolfi, Vicenza 36100, Italy Anders Ahnesjö Uppsala University & Nucletron Scandinavia AB, 751 47 Uppsala, Sweden Maria M. Aspradakis Department of Radiation Oncology, Kantonsspital Lucerne, Lucerne Switzerland **Chee-Wai Cheng** Midwest Proton Radiotherapy Institute, Bloomington, IN, **George X. Ding** Vanderbilt University Medical Center, Nashville, TN 37232 **Geoffrey S. Ibbott** Radiological Physics Center, MD Anderson Cancer Center, Houston, TX 77030 **Mark Oldham** Duke University Medical Center, Durham, NC 27710 M. Saiful Huq University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232 **Chester S. Reft** University of Chicago, Chicago, IL 60637 **Otto A Sauer** University of Wuerzburg, Wuerzburg, Germany

Misadministration Media Coverage

Springfield Hospital Reports Radiation Overdose Administered to 76 Cancer Patients

February 26, 2010

🚹 Share | 🈏 Tweet 🛅 🎗 +1 📑 Like < 0

The New York Times reported on a recent report filed by CoxHealth medical facility in Springfield, Missouri where they admitted to overradiating 76 cancer patients during treatment. The majority of the patients were being treated for brain cancer, and received about a 50% overdose of radiation therapy. A hospital employee improperly calibrated the machine used to administer the radiation.

The New York Times U.S.							Stereotactic therapy delivers radiation in such high doses that usually only one treatment is required. It is commonly used to treat small <u>tumors</u> in the head, which must be firmly				
WORLD	U.S.	N.Y. / REGION	BUSINESS	TECHNOLOGY	SCIENCE	HEALTH	stabilized, allowing radiation to be derivered to a precise location.				
POLITIC	S EDU	JCATION				The error was discovered in September 2009 only after a second physicist received training on the equipment, made by BrainLAB, and the hospital began questioning whether the machine					
Padiation Emore Reported in Missouri							had been installed correctly in 2004, in a process called commissioning.				
Nau	anc	JII EITOIS	s Kepoi	ted in M	ISSOUL	I	The overdoses at CoxHealth occurred in a state where there is little or no government				
By WALT B Published:	OGDANI Februar	CH and REBECCA F y 24, 2010	R. RUIZ			oversight of radiation therapy, a fact that Robert H. Bezanson, the hospital's president and chief executive, chose to emphasize.					
A hospital in Missouri said Wednesday that it had overradiated 76							On Wednesday, he released a letter that he wrote to the Food and Drug Administration, sayin				
patients, the vast majority with brain <u>cancer</u> , during a five-year period							that its recent decision to toughen oversight of diagnostic radiation did not go far enough.				
because powerful new radiation equipment had been set up incorrectly							"The initiative should be broadened to include regulation of medical radiation therapy as well,"				
even with a representative of the manufacturer watching as it was done							he wrote. "We have also learned that the incident here at CoxHealth is, unfortunately, not an isolated occurrence. Rather, similar instances of medical overradiation have occurred at other <u>hospitals</u> throughout the country. Without increased regulation and oversight, these instances				
The hospital, CoxHealth in Springfield, said half of all patients											
underg	oing a	particular typ	e of treatm	ent — stereota	ctic <u>radiati</u>	on	of medical overradiation will likely continue.				
$\underline{\text{therapy}}$ — were overdosed by about 50 percent after an unidentified							Wrong detector used for				
medica	l phys	icist at the hos	spital misca	librated the ne	ew equipm						
routine checks over the next five years failed to catch the error.							BrainLab cone calibration JDas (4)				

Dosimetric Variation with Detectors

Das et al, J Radiosurgery, 3, 177-186, 2000

What is a Small Field?

Lack of charged particle

- \star Dependent on the range of secondary electrons
- \star Photon energy
- Collimator setting that obstructs the source size
- Detector size is comparable to the field size

Electron Range & LCPE

- Electron range= d_{max} in forward direction
- Lateral Charged Particle Equilibrium
- Electron range in lateral direction
 - ★ Nearly energy independent
 - ★ Nearly equal to penumbra (8-10 mm)
- Field size needed for LCPE
 - ★ Lateral range
 - ★ 16-20 mm

Source Size

90%, 70%, 50%, 30%, 10% iso-intensity line

Jaffray et al, Med Phys 20, 1417-1427 (1993)

Definition of Small Fields

Das et al, Med. Phys. 35, 206-215, 2008

IAEA/AAPM proposed pathway

Alfonso, et al. Med Phys 35, 5179-5186 (2008)

Relative Dosimetry

$$D \int_{w,Q_{msr}}^{f_{msr}} = M \int_{Q_{msr}}^{f_{msr}} N \int_{DW,Q_0} k_{Q,Q_0} k_{Q,M_0} \int_{Q_{msr}}^{f_{msr},f_{ref}}$$

$$\Omega \int_{Q_{clin}f_{msr}}^{f_{clin}f_{msr}} = \frac{M \int_{Q_{clin}}^{f_{clin}}}{M \int_{Q_{msr}}^{f_{msr}}} \left[\frac{\left(D \int_{w,Q_{clin}}^{f_{clin}} \right) / \left(M \int_{Q_{clin}}^{f_{clin}} \right)}{\left(D \int_{w,Q_{msr}}^{f_{msr}} \right) / \left(M \int_{Q_{msr}}^{f_{clin}} \right)} \right] = \frac{M \int_{Q_{clin}}^{f_{clin}}}{M \int_{Q_{msr}}^{f_{msr}}} k_{Q_{clin}}^{f_{clin},f_{msr}}$$

$$k_{Q_{clin},Q_{msr}}^{f_{clin},f_{msr}} = \frac{\left(D \int_{w,Q_{msr}}^{f_{msr}} \right) / \left(M \int_{w,Q_{msr}}^{f_{clin}} \right)}{\left(D \int_{w,Q_{msr}}^{f_{clin}} \right) / \left(M \int_{w,Q_{msr}}^{f_{clin}} \right)} = \frac{\left(Output \right)_{rel}}{\left(Re \ ading \right)_{rel}}$$

$$k_{Q_{clin},Q_{msr}}^{f_{clin},f_{msr}} = \frac{\left(S \int_{w,air} \right)_{fclin} \cdot P_{fclin}}{\left(S \int_{w,air} \right)_{fmsr} \cdot P_{msr}}$$

Why So Much of Fuss?

 Reference (ref) conditions cannot be achieved for most SRS devices (cyberknife, gammaknife, tomotherapy etc)

- Machine Specific reference (msr) needs to be linked to ref
- Ratio of reading (PDD, TMR, Output etc) is not the same as ratio of dose

$$\frac{D_1}{D_2} \neq \frac{M_1}{M_2}$$
$$\frac{D_1}{D_2} = \frac{M_1}{M_2} \bullet \begin{bmatrix} k_{\mathcal{Q}_{clin}, \mathcal{Q}_{msr}} \end{bmatrix}$$

1.1 Field Size Limit for 1.00.9 Accurate Dose 0.8 Relative dose at d_{max} 0.7 Measurements with 0.6 Scanditronix-SFD —— Scanditronix-PFD 0.5 **Available Detectors** $-\times$ - Exradin-A16 0.4 PTW-0.125cc 0.3 → PTW-0.3cc • PTW-0.6cc 15 MV; Central Axis 0.2 0.1 ā 1.0 0.0 0.9 11 0 2 0 Field Size (cm) 0.8 Relative dose at d_{max} 0.6 0.5 Exradin-A16 - X - PTW-Pinpoint 0.4 \rightarrow PTW-0.125cc 0.3 Das et al, TG-106, Med Phys, • PTW-0.6cc 0.2 35, 4186, 2008 0.1 0.0 0 5 10 Field Size (cm) Πī IJDas (13)

6 MV; Central Axis

NDIANA UNIVERSITY

AAPM-2013

Impact of $k_{Q_{\text{clin}},Q_{\text{msr}}}^{f_{\text{clin}},f_{\text{msr}}}$

Correction Factors

TABLE VII. F_{corr} of the four detectors for the 5, 7.5, and 10 mm collimators, as a function of the FWHM.

 F_{corr}

FWHM (mm)	5 mm coll	7.5 mm coll	10 mm coll				
1.4	1.067	1.021	1.008				
1.8	1.087	1.017	1.007				
2.2	1.102	1.020	1.012				
2.6	1.112	1.027	1.010				
Pin Point	$F_{\rm corr}$						
FWHM (mm)	5 mm coll	7.5 mm coll	10 mm coll				
1.4	1.082	1.025	1.017				
1.8	1.099	1.024	1.013				
2.2	1.110	1.025	1.013				
2.6	1.124	1.037	1.016				
Diode	$F_{\rm corr}$						
FWHM (mm)	5 mm coll	7.5 mm coll	10 mm coll				
1.4	0.953	0.966	0.978				
1.8	0.955	0.966	0.978				
2.2	0.957	0.967	0.978				
2.6	0.940	0.967	0.978				
Diamond	$F_{\rm corr}$						
FWHM (mm)	5 mm coll	7.5 mm coll	10 mm coll				
1.4	1.066	1.001	1.001				
1.8	1.093	1.007	1.000				

1.010

1.012

1.123

2.6

Francescon, et al Med Phys 35, 504, 2008

0.999

1.001

Published data on $k_{Q_{\text{clin}},Q_{\text{msr}}}^{f_{\text{clin}},f_{\text{msr}}}$

$k_{Q_{\text{clin}},Q_{\text{msr}}}^{f_{\text{clin}},f_{\text{msr}}}$ Correction Factor vs Ion Chambers

Πī

NDIANA UNIVERSITY

AAPM-2013

Chung et al, Med Phys, 37, 2404-2413, 2010

$k_{Q_{\text{clin}},Q_{\text{msr}}}^{f_{\text{clin}},f_{\text{msr}}}$ of Linear Accelerators (Varian)

Implementing a newly proposed Monte Carlo based small field dosimetry formalism for a comprehensive set of diode detectors

G. Cranmer-Sargisona)

Department of Medical Physics, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan S7N 4H4, Canada and Division of Medical Physics, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds LS2 9, JT, United Kingdom

S. Weston

Department of Medical Physics and Engineering, St James's University Hospital, Leeds LS9 71F, United Kingdom

J. A. Evans

Division of Medical Physics, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds LS2 9JT, United Kingdom

N. P. Sidhu

Saskatoon Cancer Centre, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan S7N 4H4, Canada and Department of Physics and Engineering, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada

D. I. Thwaites

Institute of Medical Physics, School of Physics, University of Sydney, Sydney NSW 2006, Australia and Division of Medical Physics, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds LS2 9, JT, United Kingdom

(Received 21 April 2011; revised 11 October 2011; accepted for publication 14 October 2011; published 23 November 2011)

Med. Phys. 38 (12), 6992, 2011

 $k_{Q_{\text{clin}},Q_{\text{msr}}}^{f_{\text{clin}},f_{\text{msr}}}$ of Linear Accelerators

Calculation of $k_{Q_{clin},Q_{msr}}^{f_{clin},f_{msr}}$ for several small detectors and for two linear accelerators using Monte Carlo simulations

P. Francescon,^{a)} S. Cora, and N. Satariano Department of Medical Physics, ULSS 6 – 36100 Vicenza, Italy

Med. Phys. 38 (12), 6513-6527, 2011

Contents lists available at SciVerse ScienceDirect

Radiotherapy and Oncology

journal homepage: www.thegreenjournal.com

Experimental small field 6 MV output ratio analysis for various diode detector and accelerator combinations

Gavin Cranmer-Sargison a,b,*, Steve Weston b,c, Narinder P. Sidhu a,d, David I. Thwaites b,e

Radiotherapy and Oncology 100 (2011) 429–435

 $k_{Q_{\text{clin}},Q_{\text{msr}}}^{f_{\text{clin}},f_{\text{msr}}}$ Cyber Knife

	5 m	m	7.5 n	nm	10 mm	
Detector	$M_{\mathcal{Q}_{ ext{clin}}}^{f_{ ext{clin}}}/M_{\mathcal{Q}_{ ext{msr}}}^{f_{ ext{msr}}}$	$k_{\mathcal{Q}_{\text{clin}}\cdot\mathcal{Q}_{\text{msr}}}^{f_{\text{clin}}\cdot f_{\text{msr}}}$	$M^{f_{ m clin}}_{\mathcal{Q}_{ m clin}}/M^{f_{ m msr}}_{\mathcal{Q}_{ m msr}}$	$k^{f_{\rm clin},f_{\rm msr}}_{\mathcal{Q}_{\rm clin},\mathcal{Q}_{\rm msr}}$	$M_{\mathcal{Q}_{\mathrm{clin}}}^{f_{\mathrm{clin}}}/M_{\mathcal{Q}_{\mathrm{msr}}}^{f_{\mathrm{msr}}}$	$k_{\mathcal{Q}_{\text{clin}}\mathcal{Q}_{\text{msr}}}^{f_{\text{clin}}f_{\text{msr}}}$
A16	0.626 (15)	1.089 (3)	0.811 (10)	1.018 (3)	0.866 (6)	1.010 (3)
PinPoint	0.620 (17)	1.101 (3)	0.801 (7)	1.024 (3)	0.862 (5)	1.015 (3)
Diode 60008	0.726 (1)	0.943 (3)	0.873 (1)	0.949 (3)	0.912 (1)	0.964 (3)
Diode 60012	0.705 (1)	0.956 (3)	0.847 (2)	0.966 (3)	0.891 (1)	0.978 (3)
EDGE	0.726 (1)	0.948 (3)	0.864 (1)	0.955 (3)	0.906 (1)	0.966 (3)
Alanine	0.544 (8)	1.249 (8)	0.785 (12)	1.059 (4)	0.855 (13)	1.019 (3)
TLD	0.668 (4)	100	0.809 (6)		0.880 (8)	3
EBT films	0.659 (17)	***	0.811 (16)		0.853 (18)	
Polymer gels ^a	0.702 (21)		0.872 (27)		0.929 (29)	

Pantelis et al, Med Phy. 37, 2369-2379, 2010

Take Home Message

- Small field definition is dependent of the beam energy
- Stopping power ratio in small fields for most ion chambers is relatively insensitive to field size and is same as the reference field
- IAEA and AAPM working on guidelines for absolute dosimetry of small fields
 - $k_{Q_{\text{clin}},Q_{\text{msr}}}^{f_{\text{clin}},f_{\text{msr}}}$ factor converts reading to dose and depends on
 - \star Machine type
 - \star Source size
 - \star Detector
- ✤ TG-155 will provide guidelines for relative dosimetry

Thanks:

Depth Dose & Source Size

Sham et al, Med Phys, 35, 3317-3330, 2008

Dose and Penumbra with Spot Size

Scott et al, Med Phys, 36, 3132, 2009

Electron spot size (mm)