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LECTURES SERIES AT AAPM 

• AAPM 2008 --- introducing PSDs, basics & properties 
“Scintillation Dosimetry: Review, New Innovations 
and Applications” 
 

• AAPM 2010 --- further studies & validation of PSDs 
“Scintillation Dosimetry: From Plastics to Liquids 
and from Photons/Electrons to Protons” 
 

• AAPM 2013 --- application of commercial PSDs  
“PSDs: Present Status and their Applications for 
Quality Assurance and In Vivo Dosimetry”  
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WHAT IS A PSD? 

Scintillating material 

Ionizing radiation 

Scintillation light 

Optic guide  

Coupling  agent 

Photo-
detector 
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• Core (bulk solvent) 
– Polyvinyltoluene (plastic scintillators) 
– Polystyrene (plastic scintillating fibers) 

 
 
 
 
 

 
 

• Cladding (scintillating fibers) 
– Polymethylacrylate (PMMA) 
– Improves transmission of light to optical fiber 
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• Organic fluors (scintillating materials) are used with a 
bulk solvent: two components system 
– BC400: >97% PVT, < 3% organic fluors 

• e.g. p-TERPHENYL (C6H5 C6H4 C6H5). 
 

– Energy deposited in the solvent is transferred to the organic 
fluor molecules 

• Emission is typically peaked in the violet-blue region. 
 

• “Wavelength shifters” or three components system 
– A third (organic) component can also be used to absorb the 

organics fluors emitted photons and re-emit at a longer 
wavelength 

• POPOP [1,4-bis(5-phenyloxazol-2-yl) benzene] to get 
scintillators emitting in the green or yellow region. 
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PSDs COMPOSITION 

Parameter Scintillator Polystyrene Water 
Density (g/cm3) 1.032 1.060 1.000 
Electron density 
(1023 e-/g) 

3.272 3.238 3.343 

Composition  
(by weight %) 

H: 8.47 
C: 91.53 

H: 7.74 
C: 92.26 

H: 11.19 
O: 88.81 
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WATER EQUIVALENCE 

Data from NIST 
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PROPERTIES 

Beddar A S, Mackie T R, Attix  F H. Water-equivalent plastic scintillation detectors for high-energy beam 
dosimetry: I. Physical characteristics and theoretical considerations. Phys Med Biol 37: 1883-1900, 1992.  
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• A decrease from the optimal scintillation efficiency, or 
quenching, can occur under various conditions 
 

– For organic scintillators, possible thermal quenching 
 

– Radiation damage can decrease the efficiency 
 (Ionizations lead to temporary and/or permanent molecular 

damage) 
• Increased absorption due to defects (plastics turn yellow) 
• Need > kGy accumulated doses (104 to 105 Gy) 

 
– High LET: proton and ion beams 

• Overlapping excitation sites and molecule damages 
 

 

QUENCHING EFFECT 
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BACK IN THE OLD DAYS… 1992 

Negligible temperature dependence reported in initial studies. 

BC-408 
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Beddar A S, Mackie T R, Attix  F H. Water-equivalent plastic scintillation detectors for high-energy beam 
dosimetry: I. Physical characteristics and theoretical considerations. Phys Med Biol 37: 1883-1900, 1992.  
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TEMPERATURE EFFECT 

 
 
 
 
 

• BCF-60 Exhibits Non-Negligible 
Temperature Dependence 
 

• 0.5% per oC relative to room 
temperature (22oC). 
 

• BCF-12 Exhibits Smaller 
Temperature Dependence 
 

• 0.09% per oC. 
 

• Independent detectors exhibit 
very similar responses. 
 

Wootton L S, Beddar A S. Temperature dependence of BCF plastic scintillation detectors. Phys Med Biol 58: 2955-67, 
2013. 
See also: Buranurak S, Andersen CE, Beierholm AR. Temperature variations as a source of uncertainty in medical fiber-
coupled organic plastic scintillator dosimetry. Radiat Meas, 2013. 
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• JB Birks, The Theory and Practice of Scintillation Counting, 

Pergamon Press Book, MacMillan, New York, 1964. [Chapters 3 
and 6] 
 

• GF Knoll, Radiation Detection and Measurement, 3rd Edition, 
John Wiley and Sons, 2000. [Chapter 8] 
 

• WR Leo, Techniques for Nuclear and Particle Physics 
Experiments, 2nd edition, Springer-Verlag, 1992. [Chapter 7] 
 

• FH Attix, Introduction to Radiological Physics and Radiation 
Dosimetry, John Wiley and Sons, 1986. [Chapter 15] 
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The Čerenkov Challenge 
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Total signal 

Scintillation 

Cherenkov 

STEM EFFECT : ČERENKOV 
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1. Background fiber substraction 
 

2. Simple filtering 
 

3. Timing (long decay time) 
 

4. Chromatic removal 
 

5. Hyperspectral decomposition 
 

6. «Avoiding» Čerenkov generation 

Beaulieu L, Goulet M, Archambault L, Beddar S. Current status of scintillation dosimetry for megavoltage beams. 
J Phys: Conf Ser 444: 012013, 2013. 
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REMOVAL : THE TWO FIBERS METHOD 
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Beddar A S et al. Water-equivalent plastic scintillation detectors for high-energy beam 
dosimetry: I. Physical characteristics and theoretical considerations. Phys Med Biol 37: 
1883-1900, 1992; 
Beddar A S et al. Water-equivalent plastic scintillation detectors for high-energy beam 
dosimetry: II. Properties and measurements. Phys Med Biol 37: 1901-1913, 1992. 



i = 1, 2 

Fontbonne et al. Scintillating fiber dosimeter for radiation therapy accelerator. IEEE 49(5): 223-2227, 2002.  
Guillot M, Gingras L, Archambault L, Beddar S, Beaulieu L. Spectral method for the correction of the Cerenkov light effect in plastic 
scintillation detectors: A comparison study of calibration procedures and validation in Cerenkov light-dominated situations. Med 
Phys 38: 2140-2151, 2011. 
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REMOVAL : THE CHROMATIC METHOD 



Scintillator Fiber light guide Photodetector 

εaccept 
εcoupling1 

εtransmit(λ) 
 

εcoupling2 

εlight (λ) 
 

εQE (λ) 

εČerenkov(λ) 
 

ACCURATE PSD = OPTICAL CHAIN 

Plastic scintillating fibers offer a good alternative to regular 
plastic scintillators: 

• Increased light capture due to cladding (> internal reflection)  
• The cladding is also water-equivalent/no perturbation 
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 Linear response to dose 

 Dose rate independence 

 Energy independence 

 Particle type independence for photons and electrons 

 Insensitive to RF fields 

 Real-time readout 

 Spatial resolution 

ADVANTAGES OF PLASTIC SCINTILLATORS 
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Quality Assurance 
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No time to go over all PSD-based devices proposed 
in the literature. 
 
A recent review can be found here: 
 

Beaulieu L, Goulet M, Archambault L, Beddar S. Current 
status of scintillation dosimetry for megavoltage beams. 
J Phys : Conf Ser 444, 012013, 2013. 
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EXRADIN W1 SCINTILLATOR 

• Detector: 
– < 2.3 mm3 sensitive volume (1) 
– Clear optical fiber for transport (2) 

 

• Photodetector (3) 
– Two channels 

• Chromatic stem effect removal 
– Stay in the vault, but shielded 

 

• Two channels electrometer with 
dedicated software (4) 
 

1 

2 

3 

4 
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CALIBRATION PROCESS 

• Irradiation by a known dose 
• Vary the amount optical fiber 

The calibration phantom 

Fiber in minimum position Fiber in maximum position 

Guillot M, Gingras L, Archambault L, Beddar S, Beaulieu L. Spectral method for the correction of the Cerenkov light 
effect in plastic scintillation detectors: A comparison study of calibration procedures and validation in Cerenkov 
light-dominated situations. Med Phys 38: 2140–2150, 2011. 
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BASIC MEASUREMENTS : γ & e- PDDS 

Lacroix F, Guillot M, McEwen M, Cojocaru C, Gingras L, Beddar AS, Beaulieu L. Extraction of depth-dependent 
perturbation factors for parallel-plate chambers in elecron beams using plastic scintillation detector. Med Phys 
37(8):4331-4342, 2010 
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BASIC MEASUREMENTS : PROFILES 

• No residual stem effect 

Introduction 
Quality Assurance 
Small Field Dosimetry 
In Vivo Dosimetry 
Conclusion 



Small Field Dosimetry 
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SMALL FIELDS AND RADIOSURGERY 

Letourneau et al. Miniature scintillating detector for small field radiation therapy. Med Phys 26: 2555-2561, 1999. 
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SMALL FIELD : LAB PSD SYSTEM 

– Collimator used: 5, 7.5, 10, 12.5, 15, 20, 30, 40, 
50, 60 mm 

– Stem parallel to the beam axis with all detectors 
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Presentation Notes
In our particular work, we aim to take advantage of the high optical attenuation of the scintillating fibers in order to obtain a position coding of the incident fluence.
Moreover, emphasis was made on keeping the detector as thin as possible, in order to maximize the transmission of the incident beam (and thus reducing the skin dose increase du to secondary electrons).



Total scatter factors 
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Morin J, Beliveau-Nadeau D, Chung E, Seuntjens J, Theriault D, Archambault L, Beddar S, Beaulieu L.  A comparative 
study of small field total scatter factors and dose profiles using plastic scintillation detectors and other stereotactic 
dosimeters: the case of the Cyberknife. Med Phys 40(1): 011719, 2013. 
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TOTAL SCATTER FACTORS 

Morin J, Beliveau-Nadeau D, Chung E, Seuntjens J, Theriault D, Archambault L, Beddar S, Beaulieu L.  A comparative 
study of small field total scatter factors and dose profiles using plastic scintillation detectors and other stereotactic 
dosimeters: the case of the Cyberknife. Med Phys 40(1): 011719, 2013. 



Detectors 
Collimator 
diameter 

[mm] 

Correction 
factors Literature Difference 

[%] 

PTW 60008 
diode 

5 0.950 0.9441 0.6 
7.5 0.942 0.9511 0.9 

PTW 60012 
diode 

5 0.963 0.9572 -0.6 
7.5 0.971 0.9672 -0.4 

SFD diode 
5 0.957 0.9523 -0.5 

7.5 0.980 0.9763 -0.4 

MicroLion 
chamber 

5 1.020 1.0234 0.3 
7.5 0.984 0.9974 1.3 

3Araki. Med Phys 33 (2006) 
4Francescon et al. Med Phys 38 (2011) 

1Francescon et al. J Appl Clin Med Phys 10 (2009) 
2Francescon et al. Med Phys 35 (2008) 
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SBRT COMMISSIONING : EXRADIN W1 

– Same conclusion as with the laboratory system! 
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DOSE RATE INDEPENDENCE 

• High dose rate delivery: > 2000 MU/min ? 
 
• How do Ion Chambers fit in? 

– Pion is affected by dose rate  
 

• Comparison to the Exradin W1 PSD 
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Kamil M. Yenice, Ph.D. 
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• Calibrate and measure at different dose rates 
– High dose rate: 6MV, SRS mode, short (60 cm) SSD 
  ≈ 2700 MU/min 

 
 
 

 
 

 
– Even worse in electrons : 6.3% correction needed! 

Detectors Dose ratio (% diff) Corrected dose ratio 

A12 / W1 0.989 (1.1%) 0.998 (0.2%) 
CC13 / W1 0.991 (0.9%) 1.005 (0.5%) 

IBA SFD / W1 0.943 (5.7%) N/A 

Measurements planned and performed by Dany Therriault, Luc Gingras and Louis Archambault. 
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DOSE RATE INDEPENDENCE 



• Ion chambers affected by changes in Pion 
– Fully corrected by measuring Pion at a given dose 

rate 
 
– W1 PSD is independent of dose rate at least up to 

2700MU/min (max. tested!) 
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DOSE RATE INDEPENDENCE 

Measurements planned and performed by Dany Therriault, Luc Gingras and Louis Archambault. 



In Vivo Dosimetry 
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• Advantages of internal in-vivo dosimetry: 
– Point of measurement can be placed directly 

adjacent to organ at risk or within treatment 
volume. 

• Direct verification of treatment. 
• Detect adverse events or treatment variances, 

potentially stop treatment and re-assess. 
• Clinical validation to monitor patient treatment 

delivery is underway. 

IN-VIVO DOSIMETRY 
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• 2 recent Vision 20/20 papers in Medical Physics  
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IN-VIVO DOSIMETRY 



A – Ceramic fiducials 
B – Carbon spacer 
C – Scintillating fiber 
D – Optical fiber 
E – Polyethylene jacketing 

SYSTEM DESIGN 

• BCF-60 Scintillating Fiber 
optically coupled to clear 
plastic optical fiber with 
cyanoacrylate. 

• Fiducials used as surrogate to 
localize scintillating fiber. 

— All fibers are water-
equivalent 

• Light transmitted by clear 
optical fiber and captured by a 
CCD camera. 
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CURRENT EXPERIMENTAL SETUP 

To CCD sensor 

From fiber-
optic cable 

Dichroic 
mirror 

Al 
mirrors 
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• Andor Luca S CCD Camera 
– Captures light output  

from scintillator. 
– Intensity measured by  

summing pixel values in  
region of interest (ROI). 

– Black box shields from  
the ambient light. 
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• IRB approved protocol for Prostate  
cancer patients 
– PSDs can be attached to rectal balloon  

used for immobilization 

• In-vivo measurements during two  
fractions each week (Tue, Thu) 

• Set of PSDs fabricated for each patient 
– Latex sheath insulated PSDs to facilitate re-use for same 

patient 

PROTOCOL DESIGN 
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• Daily CT for in-vivo fractions 
– Necessary to localize detectors 

• Simple validation of PSDs performed after each 
treatment 

• 200 cGy delivered in simple, static, fixed geometry 
• Deviations > 2% are considered indicative of loss of proper 

function 
• Non-functioning detectors re-calibrated or discarded and re-

fabrication of new detectors 

• 5 Patients enrolled (142 total measurements). 
– Only 5 thrown out due to problems with software (2) 

or detectors’ malfunction (3). 
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MEASUREMENT RESULTS 

• Histogram of differences between measured and calculated doses. 
• Differences centered around zero: no systematic error. 
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Patient Measurements Average Difference 
[95% Confidence Interval]* 

Standard 
Deviation 

Validation 

1 30 -2.6% [-4.7%, -0.4%] 5.5% -0.1% 

2 28 -1.1% [-3.8%, +1.6%] 7.0% 0.5% 

3 30 1.5% [-1.0%, +4.0%] 6.6% 0.3% 

4 28 3.2% [-2.2%, 8.6%] 13.9% 0.5% 

5 21 -3.3% [-6.3%, -0.3%] 6.5% -0.5% 

Metric Aggregate Analysis 

Average of Means -0.5% [-4.0%, +3.0%]  

Standard Deviation of Means 2.8% 

Measurements within ± 10% 82% (90% w/out Pt. 4) 

*Calculated using student t distribution with N-1 degrees of freedom. 
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MEASUREMENT RESULTS 

1Sigma: √( 1
𝑁−1

∑(𝑥 − 𝑥̅)2) 

  
Confidence Interval of the Mean: 𝑥̅ ± 1.96𝜎

√𝑁
 

Presenter
Presentation Notes
Col 5: represents the average of all the validation measurements in %.  The average of the validation value is within 0.5% of 200 cGy.
*It doesn't mean that 95% of measurements fall within the interval, rather that if we repeated this experiment multiple times, 95% of the means we measured would fall in this interval. For practical purposes, although not exactly true, it means there is a 95% chance that the true mean (as opposed to the sample mean) is in this interval.
The bottom table statistics are computed using the five average differences for patients 1-5.
So the average of means is the average difference on a per-patient basis, rather than over all measurements.
The same is true for the standard deviation, and explains why it is relatively smaller.
(The means vary less between patients than the measurements do within a patient dataset.)



• Histogram of differences between measured and calculated doses. 
• Differences centered around zero: no systematic error. 
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Day to day agreement between detectors and TPS throughout a sample 
patient treatment (patient #2, σ = 7%). 
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MEASUREMENT RESULTS 



• Demonstration of achievable 
real-time accuracy. 
 

• Solid line: measured 
dose in real-time. 
 

• Dashed lines: indicate the  
cumulative dose calculated 
after each beam/segments 
delivery by the TPS.  
 

• Plateaus the in measured 
dose indicate beam-off. 
(Should coincide with the 
dashed lines) 
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MEASUREMENT RESULTS 

Presenter
Presentation Notes
Solid line is measured dose,
Red dashed lines are cumulative dose calculated by the TPS after each beam…
I.e. lowest line is dose after first beam, next line is dose after first and second beam, etc.
When measured dose is flat, it signifies that the beam is off. Thus at this point it should agree with the cumulative dose calculated by the TPS, which we see that it does.



• Additionally, detectors  
were well tolerated by  
patients. 
– 4/5 did not notice a  

difference between  
balloons with and without  
detectors. 

– 1 could tell a difference but said it was tolerable. 
 

• Treatment workflow was not compromised by the 
adaptation of the in-vivo dosimetry system and the 
detector placement within the patient. 
– Clinical implementation is feasible and should be non-

disruptive to the daily treatment workflow. 
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DISCUSSION 

PSDs 

• Ideally detectors are 
positioned anteriorly. 
– Homogeneous and 

larger doses. 
 

• Balloon is occasionally 
rotated, positioning 
detectors laterally in 
rectum. 
– High dose gradient. 
–  Smaller doses. 
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• The effect of positional 
uncertainty on expected 
dose uncertainty depends 
greatly on magnitude of 
the dose gradient. 

 
• Shallow gradient 

diminishes the effect of 
positional uncertainty. 
 

• Steep high dose gradient 
exacerbates the effect of 
positional uncertainty. 
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DISCUSSION 



Patient dose profile taken from isocenter to posterior rectum. 
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DISCUSSION 

Lateral rectum exhibits the steepest dose gradient: Lower absolute dose inflates % difference. 

Presenter
Presentation Notes
Yellow: <1% Uncertainty
Green: 2% Uncertainty
Red: 11% Uncertainty
Blue: 4% Uncertainty



• Measurements with calculated doses > 170 cGy 
(corresponding to an anteriorly positioned detector) 
exhibit -1.4% ± 4.7%* average agreement. 
 

• Measurements with calculated doses < 170 cGy 
(corresponding to laterally/posteriorly positioned 
detectors) exhibit 0.7% ± 11.1%* average agreement. 
 

• Anterior dose measurements are more consistent. 

*Mean and standard deviation of 65 and 72 measurements respectively, considered in 
aggregate regardless of patient of origin. 
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DISCUSSION 



25 treatment CTs acquired 
during a course of 42 Txs 

Lei Dong (MDACC), 2002 
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DISCUSSION : PROSTATE MOTION ??? 



OTHER PSD PROTOTYPES 
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OARTRAC SYSTEM 

Courtesy of John Isham, CEO, RadiaDyne 
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• AAPM 2008 --- introducing PSDs, basics & properties 
“Scintillation Dosimetry: Review, New Innovations 
and Applications” 
 

• AAPM 2010 --- further studies & validation of PSDs 
“Scintillation Dosimetry: From Plastics to Liquids 
and from Photons/Electrons to Protons” 
 

• AAPM 2013 --- application of commercial PSDs  
“PSDs: Present Status and their Applications for 
Quality Assurance and In Vivo Dosimetry”  
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