MASSACHUSETTS GENERAL HOSPITAL $C \text{ a n c e r } C \text{ e n t e r}^{\text{s}}$

Imaging Needs for Protons

Hanne M Kooy Massachusetts General Hospital Harvard Medical School, Boston, USA

Propositions

- Imaging serves to ensure the correct fraction dose
 - ... and, in current practice, assumes geometry equals dosimetry.
 - True for γ Geometry does not affect dosimetry
 - False for p Geometry strongly affects dosimetry
 - Not all observables are image-based
 - DGRT: Dose-Guided RT
- p RT requires different implementations
 - \cdot ... thus, equipment has different effectiveness between γ and p
- p physics offers novel capabilities
 - ... in-vivo, chemical, control-feedback at the delivery level
- Identify p-specific requirements & deployments
- Identify p workflow requirements

Active Goals in RT

- Image-guided therapy for improved targeting
- Increase target to healthy tissue dose ratio
- Reduce treatment time and/or increase fraction size
- Reduce cost for patient, society, and caregiver

Requires

- Registration Common reference of data
- Adaptive RT Adjust delivery pattern
- Motion tracking In-vivo
- Performance Computations, Feedback & Control
- Connectivity Data backbone & Logic

Claim: p can outperform γ

The p is an instrument

- A narrow p beam is a concise information package
 - E_{in} E_{out} dE/dX(x,y,z)
 Bragg peak localization (x,y,z)
 Charged lonizing, count, control / ion
 Nuclear interactions γ
 Highly redundant Effective use of prior knowledge
- Immediate control feedback
 - Parameters into the system (E,Q,x,y) are the ones observed
 - We also need 't'
 - Unlike IMRT where D = f(leaf position)
 - High-speed controls
 - Limited, typically, by E switching

PBS Control

Challenge – IGRT

p IGRT: Dynamics / ART

Prior Knowledge

- Pre-treatment imaging resolves the set of target positions
- Selective range imaging can rapidly "probe" the patient

the PBS time structure is fast

- Energy is slowest (0.5 s ?)
- $Q(x,y,E) \rightarrow Q(x,y,E,t)$

S Mori & G Chen MGH

OncoRay – National Center for Radiation Research in Oncology, Dresden

In vivo dosimetric verification of proton radiation therapy: Biomolecular understanding and application of hepatocytespecific functional MRI

<u>C. Richter¹</u>, J. Seco², O.C. Andronesi³, R. Borra³, A.R. Guimaraes³, T.S. Hong², A. Palard², T. Bortfeld²

¹ Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Dresden
 ² Massachusetts General Hospital, Department of Radiation Oncology, Boston
 ³ Massachusetts General Hospital, Department of Radiology, Boston

N Universitātskliniku Carl Gustav Carus

Eovist uptake mechanism

Gd-EOB-DTPA

- Clinical available (Eovist = Primovist)
- 50 % actively taken up in healthy hepatocytes by Organic Anion Transporter Proteins (OATPs)

Influence of irradiation

- Irradiation induced release of proinflammatory cytokines (TNF-α, IL-1β, IL-6)
- Proinflammatory cytokines influence hepatocytic function

Eovist enhanced MRI post-pRT

5 Gy 10 Gy 20 Gy 30 Gy 35 Gy 39 Gy

2,5 months after end of proton therapy 40 Gy in 5fx over 2 weeks

Response during treatment?

🔵 5 Gy

10 Gy

Difference Image (Post 5fx - Post 3fx)

Dose-correlated changes visible about 7-12 days after start of treatment!

A Detailed Comparison of proton vs. Carbon Ion Computed Tomography

David C Hansen¹, Thomas S Sørensen^{1;2}, Joao Seco³

1 Department of Clinical Medicine,

2 Department of Computer Science, Aarhus University, Denmark

3 Harvard Medical School and Massachusetts General Hospital, MA, USA

Email contact: dch@ki.au.dk

Ion Tomography

- Stopping Power ratio conversion from HU based on population average has a systematic range error (~2%)
- Proton tomography originally proposed by Andy Koehler (1968, *Science*)
 - Experiment: A Cormack & A Koehler (1976, PMB)
- Issues:
 - Proton: Scatter in patient
 - Carbon: Dose in patient
- Use prior information

Conventional: min $|| Ax - b ||^2$ subject to $x_i > 0$

+*Prior CT*: min $|| Ax - b ||^2 + \lambda || x - p ||^2$ subject to $x_i > 0$

where **A** is the path to ΔE functional, **x** reconstructed density, **b** energy loss, **p** prior CT converted to S

Ion Tomography

In vivo proton beam range verification using resolvable prompt gamma lines

Joost Verburg, Kent Riley PhD, Joao Seco PhD

Harvard Medical School and Massachusetts General Hospital

Resolvable prompt gamma lines

 Most prompt gamma-rays near end-of-range result from a few nuclear level transitions

•	¹⁶ O(p,p') ¹⁶ O*	6.13 MeV γ
•	¹² C(p,p') ¹² C* + ¹⁶ O(p,pα) ¹² C*	4.44 MeV γ
•	¹⁶ O(p,p') ¹⁶ O*	2.74 MeV γ
•	¹⁶ O(p,px) ¹⁵ N* + ¹⁶ O(p,px) ¹⁵ O* …	5.2 MeV γ

- Resolving discrete energies allows for novel range verifications methods
 - Incorporate known nuclear reaction cross sections
 - Improve accuracy in the presence of tissues with unknown compositions

Prototype detector

1. LaBr₃(Ce) scintillator with high energy resolution

2. Active anti-coincidence shield

- Reduce Compton background
- Reduce neutron-induced gamma background

3. Data acquisition system

- Synchronized to cyclotron radiofrequency (9 ns period)
- 200 ps sampling resolution
- Digital pulse processing

Results: Time/energy histogram

Results: Range 16 cm

Patient Imaging Requirements

- Geometric setup and stability
 - Multi (1..n) planar X-ray
- Motion tracking
 - Surface tracking (RPM, VisionRT, ...)
 - Fluoroscopy of diaphragm / internal markers
 - EM / RF
- Soft-tissue deformation / changes
 - CBCT
- Adaptive planning
 - (4D)CT
- Perform within the treatment session workflow
 - Optimization
 - Connectivity

Workflow

Imaging

- X-ray + CBCT
- CT

Procedures

- Scenarios
 - Outside / Inside room Immobilization / Imaging
 - Optimization
 - Flexibility
- Facility Layout
- Workflow

IGRT: Some in-room solutions

CT (on rails) – Off isocenter, space, time

Gantry mounted X-ray systems

HIT PPS solution

PAIR: Integrated imaging ring:

- X-ray / Panel Independent Motion
- Couch CS
- X-ray
- CBCT
- Fluoroscopy

m ↓ medPhoton GmbH

radART Paracelsus Medical University Salzburg

Ultra-large Field of Views

Image auto-stitching

medPhoton GmbH

mΦ

Fixed Beam Setup for Seated Patients

Products

Product Modules

1. P-ART Comprehensive System (all modules but adaptive therapy sw)

2. P-ART Imaging System (all modules, but the robot and the adaptive sw)

3. P-ART Adaptive Therapy System (the adaptive sw)

Real-Time imaging + ART can compensate for uncertainties in seated patients

Workflow Simulation

Analyze

- Patient flow are there bottlenecks?
- <u>Queue</u> locations and sizes are they blocked or starved?
- <u>Resources</u> are they sufficient, do they starve important operations?
- Failure modes what are they and what causes them?
- Check required capacity

• Optimize

- A stitch in time saves nine find all the little holes in the process
- Try before you build
- Create baseline for performance and improvement
- Discrete-Event Simulation
 - Model system state changes at precise points in simulated time
 - Many commercial packages Simul8

Workflow Scenarios

- Dedicated per gantry
- Immobilization with either
 - \circ No imaging
 - o CT
 - o Orthogonal Imaging
- In gantry
 - o 1..2 X-ray imaging

- In gantry
 - o 1..2 X-ray imaging

Current State – 100 days

Total (min)	553
Gantry (min)	501
Interval (min)	51

Total = End of Last – Start of First patient Gantry = sum of all patient time in gantry Request = waiting time in request

Workflow Connectivity

- The treatment session comprises several discrete tasks combinable in various workflow scenarios
 - Immobilization
 - Volumetric imaging for dose verification
 - Treatment plan adaptation
 - Setup verification
 - Beam-on monitoring
- Requires data model and connectivity for inter-task
 communication
 - DICOM Gen 2
 - IHE-RO Profiles

Workflow Connectivity

Sup 147: Second Generation RT Radiotherapy

- Existing radiotherapy IODs were designed as containers to <u>communicate</u> radiation therapy data
- Radiation therapy practice and DICOM have evolved.
- In particular, workflow management is now a key aspect of DICOM's domain of application
 - Unified Worklist and Procedure Step
 - Temporal view to map the treatment sequences

Workflow Connectivity

- MGH uses a "Whiteboard" that manages the data handoff between tasks
 - Did not find sufficient or efficient support in existing systems
- MGH / ICT are developing an Enterprise System Bus to
 - Capture and coordinate all data transactions between systems (tasks)
 - Build-up DICOM Gen 2 RT Course Record as a function of executed and pending tasks
 - INTERSYSTEMS Ensemble and Cache for ESB
 - Service Oriented Architecture
 - RT systems are, typically, "stand-alone" applications
 - Business Rule Engine to manage task scheduling and execution
 - ∙ mirth

DICOM interface and routing

Service Oriented Architecture

Large Scale Computing Architecture

Summary

- $p \neq X$
 - Same (perhaps) requirements
 - Different Implementation especially where geometry does not suffice for dosimetric feedback (CT vs CBCT)
- p physics offers enhanced feedback
 - Tissue interactions: Prompt γ
 - Immediate dosimetric feedback during delivery
 - Permits control and adaptation during delivery
- Workflow integration and variation
 - "Old" LINAC workflow model must be challenged
 - Do not, ad-hoc, re-use solutions Look at requirements
- Data & High Performance Computation Backbone
 - Light-weight "point of service" applications
 - Need to capitalize on "modern" computing

