A Report on Flattening Filter Free Linear Accelerators from the Therapy Emerging Technology Assessment Work Group

Ying Xiao, Stephen F. Kry*, Richard Popple, Ellen Yorke, Niko Papanikolaou, Sotirios Stathakis, Ping Xia, Saiful Huq, John Bayouth, James Galvin, Fang-Fang Yin

AAPM Annual meeting 2013

Making Cancer History*

- Introduction
- Technological review
- Physics Issues
 - Acceptance, Commissioning, QA, TPS
- Clinical Issues
 - Applications, Limitations, Safety, Facility planning
- Theoretical issues
- Summary and Recommendations

Why flattening filter free / Why flattening filter?

In the filter:

- Photons are absorbed -> reduced efficiency
- Photons are scattered -> increased contamination radiation
- Neutrons are produced -> increased contamination radiation

Flat profile

- Only flat at one depth
- Patients and tumors aren't flat

Can it be removed ?

- In SRS, small field may be sufficiently flat regardless of FF
- In IMRT, optimal fluence maps are not "flat" (MLC)

Initial FFF works

1991: Intracranial SRS study Highly elevated dose rate Reduced out-of-field dose More recently: Tomotherapy Cyberknife Don't really need a flattening filter Present day: All vendors offer FFF beams

FIG. 1. A cross section through the upper collimator of the Therac-6. The beam is incident on the flattening filter from above.

Radiosurgery with unflattened 6-MV photon beams

P. F. O'Brien and B. A. Gillies

Toronto-Bayview Regional Cancer Centre, Sunnybrook Health Science Centre, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada

M. Schwartz

Sunnybrook Health Science Centre, Department of Neurosurgery, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada

519 Med. Phys. 18 (3), May/Jun 1991

- Introduction
- Technological review
- Physics Issues
 - Acceptance, Commissioning, QA, TPS
- Clinical Issues
 - Applications, Limitations, Safety, Facility planning
- Theoretical issues
- Summary and Recommendations

Implementation – Varian

- 6 MV and 10 MV FFF beams available
 - High Intensity Mode
- Same beam (same electron energy FF vs FFF)
 - Delivered through different carrousel port
 - 2mm brass instead of flattening filter
 - W instead of Cu target for 10 MV beam
 - Softer photon spectra
- Higher dose rate (max values)
 - 6 MV: 1400 MU/min
 - 10 MV: 2400 MU/min
 - TrueBeam offers 5+ photon beams

Implementation – Siemens

- Implemented FFF modality, but no longer in radiotherapy market.
- 7 UF, 11 UF, 14 UF, 17 UF
- Different electron energy FF vs FFF
 - -Energy raised to restore depth dose
 - -7 UF PDD ~ 6 FF PDD
- All beams operate up to 2000 MU/min
- Linac only equipped with subset of beams
 1 FF beam, 1-2 FFF beams

Implementation – Elekta

- FFF modality recently released Versa
- 6 MV and 10 MV FFF beams available
- Different electron energy FF vs FFF
 - Energy raised to restore depth dose
 - -2mm Stainless steel filtration
- Higher dose rate (max values)
 - 6 MV: 1400 MU/min
 - 10 MV: 2200 MU/min

- Introduction
- Technological review
- Physics Issues
 - Acceptance, Commissioning, TPS, QA
- Clinical Issues
 - Applications, Limitations, Safety, Facility planning
- Theoretical issues
- Summary and Recommendations

Acceptance Testing

- Similar to conventional FF beams

 AAPM TG-45 and TG-142
- Measure beam profile shape instead of flatness
 - Definition depends on manufacturer specifications and agreement
 - Caution about dose rate effects (recombination)
 - Scanning ion chamber

- Introduction
- Technological review
- Physics Issues
 - Acceptance, Commissioning, TPS, QA
- Clinical Issues
 - Applications, Limitations, Safety, Facility planning
- Theoretical issues
- Summary and Recommendations

Commissioning

Calibration

– Can you just do a standard TG-51?

• Other dosimetric properties

Calibration 1: Size of ion chamber

Is a farmer chamber appropriate for calibration?
 Non-flat beam -> Volume averaging concerns

~0.2% error from volume averaging (6 and 10) over 2 cm

Size of ion chamber recommendations

- Some small effect
- Options
 - Use a Farmer chamber and correct for partial volume averaging
 - Use a smaller chamber (check with AAPM TG-51 working group on appropriate chambers)
- Pay attention to centering the chamber

Calibration 2: Recombination

Recombination is a function of dose per pulse
NOT nominal dose rate – dose rate changed by pulse dropping

	6 MV		10 MV		
	FF	FFF	FF	FFF	
Varian	0.03	0.08	0.03	0.13	
Elekta	0.03	0.06	0.06	0.15	

Dose per RF pulse (at d_{max}), cGy/pulse

- TG-51: accounted for with $P_{ion} 2$ voltage technique.
- An approximation of recombination
 - Valid for FFF beams? (calibration)
 - Variation with depth and off-axis position? (scanning)

Calibration 2: Recombination

• P_{ion} is larger for

• FFF beams

- 2 Voltage technique
- works for evaluated
- chambers
- (within 0.2%)

	<u>6 MV FFF</u>		<u> 10 MV FFF</u>		
Chamber	10 cm	d _{max}	10 cm	d _{max}	
Exradin A-12	1.006	1.009	1.010	1.014	
PTW TN30013	1.005	1.008	1.011	1.013	
NEL 2571	1.008	1.013	1.015	1.018	

Pion 1.003-1.005 for FF beams at 10 cm

Kry et al, JACMP 13(6):318;2012

- Must verify for all reference dosimetry (including FFF) per WGTG-51 report
- Variation with depth/off axis position
 - Up to 1% variation (chamber specific)
 - Also variations for FF beams but on a smaller scale (<0.3%)

Recombination recommendations

- 1. For calibration
 - Verify the 2-voltage technique for new chambers
 - Perform measurements at a series of V to confirm linear relationship between 1/V and 1/Q
 - True for FF and FFF beams
 - Use the 2-voltage technique
- 2. For scanning measurements
 - Including PDD(10) for calibration!
 - Once chamber has been verified to be performing normally:
 - Assess recombination (2 voltage technique) to determine the range of recombination for your chamber.
 - Use reasonable clinical judgment

Calibration 3: Pb and k_o

- PDD(10)_x used to calculate k_Q
- Lead foil recommended for E>~10 MV?
- Is it needed for 10 MV FFF beams? PDD(10)? Unclear.
 - Needs verification
- <u>Safe choice: use lead</u>
- k_Q
- Different beam energy (Varian) requires different k_Q
- Relationship between $PDD(10)_x$ and k_0 still holds
- Determine k_Q in the traditional manner

Commissioning

- Calibration is the most interesting part!
- Remainder is similar to commissioning of flat beam
 - Collect same data
- Values will be different, TPS beam model will be different
 - Most differences don't really matter

Percent Depth Dose

Varian

Elekta/Siemens

- FFF beams have a softer spectrum
- Steeper PDD curve

Vassiliev Phys Med Biol 2006;51:1907

PDD restoredSame PDD(Doesn't mean all other properties restored)

Profiles

- FFF beams are forward peaked
- Profiles are minimally depth dependent (spectra consistent)

Vassiliev Phys Med Biol 2006;51:1907

Output factors

- FFF beams have reduced field-size dependence
 - Less head scatter

Sh

Sc,p

Field size (cm ²)	6 MV FF	6 MV FFF
2×2	0.865	0.909
3×3	0.908	0.938
4×4	0.928	0.953
6×6	0.958	0.973
10×10	1	1
15×15	1.033	1.022
20×20	1.054	1.037
30×30	1.082	1.056

Vassiliev Phys Med Biol 2006;51:1907

Zhu Med Phys 2006;33:3723

Penumbra and MLC transmission

- Varian:
- Penumbra is sharper

Penumbral widths (mm) in 10 cm depth in water			
	Field size (cm ²)	6F	6U
Inline	5×5	3.3	3.1
	10 × 10	3.9	4.1
	15 × 15	4.4	4.5
	20 × 20	4.9	5.2
Crossline	5×5	5.4	4.7
	10 × 10	6.2	5.4
	15 × 15	6.9	6.1
	20 × 20	7.3	7.0

- Elekta/Siemens
- Penumbra is wider

Poenisch Med Phys 2006;33:1738 Kragl Radiother Oncol 2009;93:141 Huang JACMP 2012;13(4):71

- Less and more uniform MLC transmission
- Softer and spatially uniform spectrum

Kragl Radiother Oncol 2009;93:141

Skin Dose

Varian: Softer spectrum -> Higher skin dose

Elekta/Siemens: Restored PDD -> Less different

Skin dose more elevated for smaller fields

Wang IJROBP 2012;83:e281

Out of field dose

• Generally lower with FFF

SRS Kragl et al, Z Med Phys 2011;21:91

IMRT Kry et al. Phys Med Biol 2011;55:2155

- Introduction
- Technological review
- Physics Issues
 - Acceptance, Commissioning, TPS, QA
- Clinical Issues
 - Applications, Limitations, Safety, Facility planning
- Theoretical issues
- Summary and Recommendations

Treatment Planning Systems

- Most major commercial TPSs can model FFF beams
 - At least current versions
- Planning systems do an excellent job matching measured data
 - Easier to model beam because of uniform spectrum -> better agreement (Kragl 2012)

- Introduction
- Technological review
- Physics Issues
 - Acceptance, Commissioning, TPS, QA
- Clinical Issues
 - Applications, Limitations, Safety, Facility planning
- Theoretical issues
- Summary and Recommendations

QA

- Largely follow TG-142
- Profile shape is glaring new FFF feature
 - Already moved to "profile shape" rather than flatness
 - Assess point
 - by point
 - Assess with areas
 - Assess with slopes
 - of the profile
- Does it match baseline? (TPS)

Fogliata Med Phys 39:6455;2012

- FFF beams are not largely different but there are unique features.
- Is additional QA needed?
- Are procedural changes needed?
- Assess risk of problems via Failure Mode and Effects Analysis
- This is largely procedural, we'll talk more about it under "safety"

- Introduction
- Technological review
- Physics Issues
 - Acceptance, Commissioning, QA, TPS
- Clinical Issues
 - Applications, Limitations, Safety, Facility planning
- Theoretical issues
- Summary and Recommendations

Major applications:

• IMRT

• SRS/SBRT

• Time considerations

• Dosimetry considerations

IMRT

• <u>Time</u>

- Treatment time:
- nasopharynx & prostate plans (Fu, PMB 49;1535:2004)
- Various dose rates, leaf speeds, # fields...
- <u>10-30% faster delivery with FFF</u>
- Good
 - Less patient motion, more patient comfort
- Perspective
 - Not a big time saving
 - Most treatment time is not beam-on time
- Planning time:
 - The same

IMRT

• <u>Dosimetry</u>

- Prostate, head and neck, brain, lung, esophagus, chest wall...
- IMRT, VMAT...
- Same target coverage
- FFF slightly more conformal
- FFF slightly better OAR sparing
 - Sharper penumbrae
- Differences small

• Dosimetry

Equivalent treatments

Vassiliev IJROBP 68:1567;2007 Stathakis Appl Rad Iso 67:1629;2009

SRS

• <u>TIME</u>

- A lot of treatment time is beam-on time
- Notably faster overall treatments
- SBRT lung treatment time (Vassiliev JACMP 10;2009)
 - 25 s/field reduced to 11 s/field
 - Facilitates breath hold/gating
- CNS radiosurgery (12-30 Gy in 1-5 fx) (Pendergast J Radiosurgery SBRT 1:117;2011)
 - Average time patient was in room 10:42
 - Facilitates using standard time slots for SRS

SRS

- **DOSIMETRY**
- All doses very similar (Target and OARs)
 - Equivalent treatments

Vassiliev JACMP 10;2009

- Introduction
- Technological review
- Physics Issues
 - Acceptance, Commissioning, QA, TPS
- Clinical Issues
 - Applications, Limitations, Safety, Facility planning
- Theoretical issues
- Summary and Recommendations

Limitations

- Forward planned options, e.g., breast
 - FFF requires IMRT or FiF
 - May require change in clinical workflow/practice
- Emergent cases are harder to accommodate
 - Vendors could include internal flat-beam optimization
 - No good solution currently
 - Most clinics probably need a flat beam as well

Practical considerations

- Having flattened and FFF beams is OK
 Clinics have multiple beams
- Each additional beam is more QA!!
- How many beams?
 - Do you need them all?
- Do you need every capability?
 - Wedges don't make much sense for FFF beams

- Introduction
- Technological review
- Physics Issues
 - Acceptance, Commissioning, QA, TPS
- Clinical Issues
 - Applications, Limitations, Safety, Facility planning
- Theoretical issues
- Summary and Recommendations

Safety

- Machine performance
 - Per manufacturers, MLC and dose/dose rate controller systems are sufficient to allow IMRT, VMAT, gating, etc. in FFF mode
 - Studies all seem to support this

New risks?

- FFF beams are not largely different
 - Unique dosimetry
 - New workflow
- Assess risk of failure modes via Failure Mode and Effects Analysis
- Based on FMEA scores, consider and design additional safety/QA procedures.
- Example is provided, but is only a suggestion. Individuals should assess risks based on their clinical practice/procedures.

FMEA for FFF beam

Failure Mode and Effects Analysis

Failure Mode	Ο	S	D	Risk Probability Number (product)
Inaccurate calibration, e.g., error in P _{ion}	2	5	6	60
Failure to account for excessive skin dose	5	6	4	120
Dose problems from low MU segments	3	4	4	48
Inaccuracy of QA devices	4	5	4	80
Wrong beam type selection due to confusing user interface in planning	3	4	4	48
Wrong beam type selection due to confusing user interface in delivery	2	6	3	36
Use of wedges or other devices for which FFF wasn't commissioned	2	6	4	48
Failure to catch problem during treatment due to fast delivery	3	5	5	75
Calibration error due to chamber placement off-axis	2	5	6	60

Safety recommendations

- Consider these and alternate failure modes per clinical practice and devise strategies to address them
 - Go through list in report
 - Skin dose: spread out beams
 - Dose rate concerns: test equipment

- Introduction
- Technological review
- Physics Issues
 - Acceptance, Commissioning, QA, TPS
- Clinical Issues
 - Applications, Limitations, Safety, Facility planning
- Theoretical issues
- Summary and Recommendations

Facility planning

- FFF requires less shielding Kry et al., PMB 54:1265;2009
 Unless drastically different workload
- Linacs offer both modalities, must shield for both
 - Conservatively means FF shielding

- Introduction
- Technological review
- Physics Issues
 - Acceptance, Commissioning, QA, TPS
- Clinical Issues
 - Applications, Limitations, Safety, Facility planning
- Theoretical issues
- Summary and Recommendations

Radiation Biology

- Higher dose rate means differences in biology
- DNA repair kinetics
 - LQ model
 - DNA damage from a given particle, proportional to dose (linear term) dose rate independent
 - DNA damage from different sub-lethal events from different particles (quadratic term) * of interest *

- DNA may repair between these sub-lethal events

- Lower dose rate = more time for repair
- Higher dose rates = less opportunity for repair

- Repair kinnetics modeled as exponential decrease of damage with half-time τ

Radiation Biology

- The importance of the repair depends on: treatment time/repair half-time (T/τ)
 - radiation is less effective at larger T/τ
- Sub-lethal repair kinetics are uncertain $-\tau \sim 0.4$ hr to 5-6 hrs, depending on the study/system
- Implication: better tumor control with faster delivery

 FFF treatments are more effective at killing cells
- Also, more normal tissue toxicity
- Unclear if discernible difference in clinical practice
- Treatment time doesn't change much except for SRS

- Introduction
- Technological review
- Physics Issues
 - Acceptance, Commissioning, QA, TPS
- Clinical Issues
 - Applications, Limitations, Safety, Facility planning
- Theoretical issues
- Summary and Recommendations

Summary

- Applications:
 - Any IMRT or SRS/SBRT
- Advantages
 - Faster delivery
 - OAR sparing, less out-of-field dose, better modeling by TPS
- Disadvantages
 - Higher skin dose (worst for Varian)
 - Not as good for 3D and emergent cases
 - Additional QA if increase number of beams

Recommendations

- Commissioning and QA:
 - Follow standard acceptance test, commissioning, and periodic QA programs
 - Profile shape replaces flatness
 - Test all devices for dose-rate characteristics
 - commissioning, scanning, IMRT QA
 - Pay attention during calibration
 - Confirm Pion
 - Address partial volume effect
 - Center chamber
 - Calculate k_Q in traditional manner

Recommendations

- Treatment planning
 - Confirm your TPS can handle FFF beams
 - Do comparative planning FF vs FFF
 - Use beam arrangements to spread out skin dose
- Safety

- Construct a FMEA table to mitigate new risks

