Therapy Educational Course (TH-C-108, 10:30-11:25 am):

Radiobiological Models in Brachytherapy Planning and Evaluation

Zhe (Jay) Chen, PhD & David J. Carlson, PhD

Department of Therapeutic Radiology

Yale school of medicine

Session at a Glance

- General introduction
 - Zhe (Jay) Chen, Ph.D.
- Basic concepts and relevant radiobiological models – David J. Carlson, Ph.D.
- Clinical applications in brachytherapy – *Zhe (Jay) Chen, Ph.D.*
- Questions & answers
 - David J. Carlson, Ph.D. & Zhe (Jay) Chen, Ph.D.
- Session ends promptly at 11:25 am

Rationale for this course

- Brachytherapy is just a little bit **more complex** than EBRT
 - Brachytherapy utilizes a multitude of radioactive sources & dose delivery techniques:
 - Photon energies: 20 keV to 660 keV (e.g., ¹⁰³Pd, ¹²⁵I, ¹⁹²Ir, ¹³⁷Cs)
 - Decay half-lives: ~10 days to 30 years (e.g., ¹³¹Cs, ¹³⁷Cs)
 - Temporary continuous LDR irradiation lasting hours to days (e.g., conventional intracavitary GYN)
 - Permanent LDR irradiation with exponentially decaying dose rates (e.g., permanent interstitial implants for prostate and head & neck cancers)
 - Multi-fraction HDR irradiations with different dose fractionations (e.g., intracavitary GYN/Cervix, interstitial prostate implant)
 - The spatial & temporal dose delivery patterns can be drastically different from one another and from EBRT
 - Dose/dose rate can differ easily by a factor of 2 or more among techniques, or over the same target volume for a given technique

Rationale for this course

- The clinical impact of such diverse spatial & temporal variations is **difficult to assess** using traditional dose-based metrics
 - The biological effects depend **not only** on the total dose given **but also** on how the dose is delivered
 - *in vitro* Chinese Hamster cells

(Bedford et al., *Radiat Res*, 1973)

Breast cancer: EBRT (45 Gy) + ¹⁹²Ir boost (37 Gy)

(Mazeron et al., IJROBP 1991)

Rationale for this course

- Radiobiological models can be a potentially useful tool for **relative comparison** of different spatial & temporal dose delivery patterns
 - Many models, purely empirical or based on high-level modeling of key cellular processes, have been developed
 - They are being used increasingly by medical physicists in comparing different treatment techniques and in deriving equivalent treatment regimes

• A good understanding of their potential, limitations, and intended use is critical for safe and beneficial use of the models in clinics

Goal & Objectives:

- **Goal**: Review existing models and their use in selected brachytherapy modalities to facilitate meaningful and consistent use
- **Objectives**: Help clinical medical physicists to
 - Gain a better understanding of the rationale for using radiobiological models in brachytherapy treatment planning and evaluation
 - Recognize the assumptions and limitations of the models and their intended use in relative comparison of competing brachytherapy modalities
 - Be aware of the potential pitfalls regarding the selection, use, and interpretation of radiobiological models

Radiobiological Models in Brachytherapy Planning and Evaluation

Part I: Basic Concepts and Relevant Models

David J. Carlson, Ph.D. Assistant Professor Dept. of Therapeutic Radiology david.j.carlson@yale.edu

Therapy Educational Course at the 55th Annual Meeting of the AAPM

Date and Time: August 8, 2013 from 10:30-11:25 AM **Location:** Room 108 **Conflict of interest:** None

Background and Motivation

Biologically Guided Radiation Therapy (BGRT)

- Systematic method to derive prescription doses that integrate patientspecific information about tumor and normal tissue biology
- **Problem:** derived prescriptions may have large uncertainties
 - Uncertainties in physical and biological factors (experimental and clinical) that influence tumor and normal-tissue radiation response
 - Incomplete understanding of molecular and cellular mechanisms

- Minimize dose gradients across tumor (uniformity), deliver prescribed isodose contours to target, minimize max. dose to critical structures, etc.
- Uniform dose may not be most desirable

■ **BGRT** → *Biological objective functions*

- More direct approach to optimization instead of relying on dose-based surrogates
 - + Maximize tumor cell killing (LQ) and tumor control probability (TCP)
 - + Minimize normal tissue complication probability (NTCP)

Classical description of survival curves

- Low doses: shoulder region, survival falls slowly w/ dose
- **Intermediate doses**: region where survival curve bends and survival shows greater change with increasing dose
- High doses: region where survival falls rapidly with dose (curved? exponential?)
- Most models used to fit survival curves are based this shape
 - Models based on target theory
 - Single target, single hit
 - Multi-target, single hit
 - Composite curves

– Linear-quadratic (LQ) model

The double strand break (DSB)

- A DSB is formed when two breaks in the sugar-phosphate backbone occur on opposite sides of DNA helix within ~**10 base pairs**
- Simple DSB:

• Many experiments for all types of DNA damage, including DSB, show that damage formation is proportional to absorbed dose up to hundreds of Gy

DSBs are formed through one-track mechanisms

DSB induction in human fibroblasts (MRC-5) irradiated by 90 kVp x-rays (Rothkamm and Lobrich 2003)

One- and two-track radiation damage

Lethal lesions are created by the actions of one or two radiation tracks

Exchange-type aberrations

Pairwise damage interaction (binary misrepair)

Linear-quadratic (LQ) cell survival model

$$S(D) = \exp\left[-\left(\alpha D + \beta D^2\right)\right]$$

Tumor Control Probability (TCP) Model

Yale school of medicine

Inter-patient variability in radiosensitivity

- Heterogeneity of human tumour radiation response is well known
- Many groups have accounted for variations in interpatient tumour heterogeneity by assuming that radiosensitivity values are normally distributed across the population
- If interpatient heterogeneity is ignored, TCP model generally results in an unrealistically steep dose-response curve

Figure from: Keall PJ, Webb S. Optimum parameters in a model for tumour control probability, including interpatient heterogeneity: evaluation of the log-normal distribution. *Phys. Med. Biol.* 2007; 52: 291–302.

Factors that alter treatment effectiveness

4 R's of Radiobiology give rise to "dose rate" effects:

Treatment duration

Divide a tumor into voxels with radiosensitivity α_i and β_i . Correct SF for dose heterogeneity, inter- and intra-tumor variability in radiosensitivity and the R's of radiobiology:

$$S(D) = \exp\left[-\left(\alpha D + \beta G\left[\mu, t\right]D^2\right)\right]$$

 $(\alpha D + \beta G[\mu, t]D^2)$ = expected number of lethal lesions per cell α = one-track lethal damage coefficient [Gy⁻¹] β = two-track lethal damage coefficient [Gy⁻²]

G[μ , *t*] is the Lea-Catcheside dose protraction factor $\mu = \ln 2/\tau = \text{rate of DSB rejoining [h⁻¹]}$

Limiting cases:

 $\lim_{t \to 0} G = 1 \longleftarrow \text{Instantaneous dose delivery}$ $\lim_{t \to \infty} G = 0 \longleftarrow \text{Infinitely protracted dose}$

Sachs RK, Hahnfeld P, Brenner DJ. The link between low-LET dose-response relations and the underlying kinetics of damage production/repair/misrepair. *Int. J. Radiat. Biol.* 72(4): 351–74 (1997).

Yale school of medicine

General form of the protraction factor

Most general form of the protraction factor:

Absorbed dose (Gy)

Probability per unit time sublethal damage (DSBs) is rejoined

$$\mu = \frac{\ln 2}{\tau}$$
 - Half-time for sub-lethal damage (DSB) repair

For most mammalian cells, $\tau \sim 0.1$ h to 10 h

Dose rate effects and DNA damage repair

- Cell killing decreases with decreasing dose rate
- If $G(\mu, t)$ included, unique set of parameters can predict the data: $\alpha = 0.04 \text{ Gy}^{-1}$, $\beta = 0.02 \text{ Gy}^{-2}$, $\tau = 6.4 \text{ h}$
- Repair of DNA damage occurs between fractions *and* during treatment delivery
- Effect increases with increase in delivery time

\rightarrow Critical for brachytherapy

Measured data from Stackhouse M.A. and Bedford J.S. Radiat. Res. 136, 250-254 (1993) and Wells R.L. and Bedford J.S. Radiat. Res. 94(1), 105-134 (1983).

Biologically Effective Dose (BED)

- BED is an LQ based estimate of the *effective* biological dose that accounts for delivered total dose, the dose fractionation, and the radiosensitivity of tissue
- Commonly used for isoeffect calculations

Recall
$$S(D) = \exp\left[-\alpha D - \beta G D^2 + \gamma T\right]$$

Take the negative logarithm of *S* and divide by α :

This expression is more general than the commonly used BED formalism $\frac{1}{n}$ 0

$$BED = -\ln S(D) / \alpha = D \left[1 + \frac{\cancel{GD}}{\alpha / \beta} \right] - \frac{\gamma T}{\alpha}$$

Repopulation effects are often neglected and *G* is set equal to $\sim 1/n$ (daily fractions), where n = # of fractions.

$$BED = D\left[1 + \frac{d}{\alpha / \beta}\right]$$

where d = dose per fraction (Gy) and D = nd

HR Withers, HD Thames, LJ Peters. A new isoeffect curve for change in dose per fraction. Radiother. Oncol. 1, 187-191 (1983).

Isoeffect Example for Prostate Cancer

Assume α/β = 3 Gy, for a standard EBRT fractionation of 39 fractions of 2 Gy:

$$BED = 78 \text{ Gy} \left[1 + \frac{2 \text{ Gy}}{3 \text{ Gy}} \right] = 130 \text{ Gy}$$

 Rearrange simplified BED equation:

$$d = \frac{\alpha / \beta}{2n} \left(-n + \sqrt{n^2 + \frac{4nBED}{\alpha / \beta}} \right)$$
$$= \frac{3 \operatorname{Gy}}{2n} \left(-n + \sqrt{n^2 + \frac{4n \times 130 \operatorname{Gy}}{3 \operatorname{Gy}}} \right)$$

Isoeffect Example for Prostate Cancer

Assume α/β = 3 Gy, for a standard EBRT fractionation of 39 fractions of 2 Gy:

$$BED = 78 \text{ Gy} \left[1 + \frac{2 \text{ Gy}}{3 \text{ Gy}} \right] = 130 \text{ Gy}$$

 Rearrange simplified BED equation:

$$d = \frac{\alpha / \beta}{2n} \left(-n + \sqrt{n^2 + \frac{4nBED}{\alpha / \beta}} \right)$$
$$= \frac{3 \operatorname{Gy}}{2n} \left(-n + \sqrt{n^2 + \frac{4n \times 130 \operatorname{Gy}}{3 \operatorname{Gy}}} \right)$$

Two radiotherapy regimens are equally effective when

Biological effect for Treatment #1 \rightarrow BED₁ = BED₂ \leftarrow **Biological effect** for Treatment #2 $D_1 \left[1 + \frac{d_1}{\alpha / \beta} \right] = D_2 \left[1 + \frac{d_2}{\alpha / \beta} \right]$ $D_{2} = D_{1} \frac{\left[d_{1} + \alpha / \beta\right]}{\left[d_{2} + \alpha / \beta\right]}$ **Total dose required** for treatment #2 to _____ be equally effective **Fraction size (treatment 2)**

Equivalent Dose in 2 Gy Fractions (EQD2)

- The total dose in 2-Gy fractions that would give the same log cell kill as the given schedule
- Often considered a more practical alternative than BED for the clinic
 - Familiar and intuitive quantity for physicians
 - Can be compared with clinical experience decades of experience administering 2 Gy fractions

Equivalent dose
in 2-Gy fractions
$$\rightarrow EQD2 = D_1 \frac{\left[\frac{d_1 + \alpha / \beta}{2 + \alpha / \beta}\right]}{\left[\frac{2 + \alpha / \beta}{2 + \alpha / \beta}\right]}$$

Assumptions: 1. No change in treatment time 2. Repair negligible

Fraction size (treatment 1)

• Note: also commonly written as $EQD2 = \frac{BED}{1+2/(\alpha / \beta)}$

Effective BED

- Brachytherapy dose distributions are inherently nonuniform
- An **Effective BED** can be calculated from individual BED_{*i*} for all tumor subvolumes:

$$BED = -\frac{1}{\alpha} \ln \left(\sum_{i} v_{i} e^{-\alpha \cdot BED_{i}} \right)$$

 $v_i =$ fractional volume receiving dose D_i or initial dose rate \dot{D}_{0i}

- Information on 3D variation of BED over entire volume of clinical interest
- Evaluate and address biological significance of "hot" or "cold" dose regions
- Can be used to calculate and analyze BED-volume histograms
- **Note**: formulation above implicitly assumes that the (1) initial tumor burden and radiosensitivity are spatially uniform and that (2) RBE is unity

Equivalent Uniform Dose (EUD)

- EUD is defined as the uniform dose that, if delivered over the same number of fractions as the non-uniform dose distribution of interest, yields the same radiobiological effect
 - Assumes two dose distributions are equivalent if they cause same biological effect
 - Accounts for non-uniform dose throughout tissue of interest
- To extend the concept to normal tissues, Niemierko (1999) proposed a phenomenological formula referred to as the generalized EUD:

$$gEUD = \left(\sum_{i} v_{i} D_{i}^{a}\right)^{1/a}$$

 v_i is the fractional organ volume receiving a dose D_i
 a is a tissue-specific parameter for volume effect

gEUD often used in plan optimization and evaluation because same model can be applied to both targets and OARs with a single biological parameter

Niemierko A. Reporting and analyzing dose distributions: a concept of equivalent uniform dose. *Med Phys.* 24(1):103-10 (1997). Niemierko A. A generalized concept of equivalent uniform dose (EUD). *Med Phys.* 26: 1101 (1999).

Model assumptions and limitations

Limitations of the LQ model

- Does not explicitly capture many important biological factors, e.g., low dose hyper-radiosensitivity, bystander effects, possibility of other biological targets (e.g., endothelial cell apoptosis in vasculature)
- High dose controversy (approximation for low dose rates and low doses, predictive up to ~10 Gy or higher?)

Uncertainties in radiosensitivity parameters

- Assumed values not meant to be interpreted as only biologically plausible parameters (inter- and intra-patient variability in radiosensitivity)
- Lack of adequate data for many tumor sites and normal tissue

Best to practice evidence-based medicine

- Clinical data is the gold standard \rightarrow must be skeptical of simplified models and understand limitations
- Value of models highest in absence of good data \rightarrow guide treatment decisions instead of relying on trial and error

Radiobiological Models in Brachytherapy Planning and Evaluation II. Clinical Applications and Discussions

Zhe (Jay) Chen, Ph.D. Professor Dept. of Therapeutic Radiology zhe.chen@yale.edu

Therapy Educational Course at the 55th Annual Meeting of the AAPM

Date and Time: August 8, 2013 from 10:30-11:25 AM **Location:** Room 108 **Conflict of Interest:** None

What are the models good for?

- Predicting absolute response **No** (at least, not yet)
- Relative comparison Yes (in most of the current applications)

Comparing the relative effectiveness of a given technique on different biological systems

(**same** dose/dose delivery pattern on **different** model parameters)

- fast/slow growing tumors
- early/late reacting tissues
- aerobic/hypoxic cells
- impact of model parameters uncertainties

Comparing the relative effectiveness of different treatment techniques on a given biological system

(**different** dose/dose delivery patterns on the **same** set of model parameters)

• ...

- ${}^{125}\mathrm{I}/{}^{103}\mathrm{Pd}/{}^{131}\mathrm{Cs}$
- LDR/HDR/PDR
- impact of technique variation
- optimization of dose delivery techniques

■ ...

Protracted irradiation with constant dose rates

- Relevant clinical scenarios:
 - Intracavitary LDR brachytherapy using $^{137}\mbox{Cs}$ source (T $_{1/2}$ of 30 yrs) for cervical cancer
 - e.g., total dose: 80 Gy to Point-A in two fractions
 - Dose rate at Point-A: ~ 0.53 Gy/hr, total treatment last 144 hrs
 - Dose rate: ~constant per fraction due to long T_{1/2}
 - Intracavitary HDR using ¹⁹²Ir source ($T_{1/2}$ of 74 days) for GYN malignances, breast cancer, and interstitial HDR for prostate cancer, ...
 - Total dose: variable in multiple fractions
 - Dose rate at prescription point: $\sim 12 50$ Gy/hr, treatment last from minutes to < 1 hr per fraction
 - Dose rate: ~constant per fraction due to short treatment time
- How is the biological effectiveness of a prescribed dose affected by the rate of dose delivery?

Protracted irradiation with constant dose rate

• The BED model

G(T) – dose protraction factor

$$BED = D\left[1 + \frac{D}{(\alpha / \beta)} \frac{2}{(\mu T)^2} (e^{-\mu T} + \mu T - 1)\right] - \gamma \frac{T - T_k}{\alpha}$$

RE – relative effectiveness

Recall the basic assumptions:

- Constant dose rate = D/T
- For uniform dose distribution or dose at a point of interest
- Radiobiological properties by five parameters (α , β , μ , γ , T_k)
- Mono-exponential repair kinetics
- Uniform proliferation rate
- This model captures the influence of only 2 "R"s of radiobiology, i.e., repair & repopulation, on the dose rate effect

- In absence of these 2 "R"s,
$$BED = D\left[1 + \frac{D}{(\alpha / \beta)}\right]$$
, no dose rate effect

Single fraction LDR/HDR: Influence of dose rate

(repair half-time $(t_{1/2}) = 1.5$ hr, $\gamma = 0.0$, D = 60 Gy)

- The relative effectiveness of a given dose increases with increasing dose rate

Single fraction LDR/HDR: Influence of dose rate - dependence on tissue type

 Altering dose rate has a greater influence on late-reacting (e.g., typical normal) tissues than for early reacting tissues (e.g. typical tumors)

Single fraction LDR/HDR: Influence of dose rate - impact on therapeutic gain

 Consistent with the general philosophy favoring dose protraction while cautioning against using small number of high doses/dose rate

Single fraction LDR/HDR: Influence of dose rate - interplay with other factors

- The observations made so far are based on three key assumptions:
 - 1) The α/β of tumor is greater than irradiated normal tissues
 - 2) There is no cell proliferation
 - 3) Normal tissues receives the same dose as the tumor
- A change in these assumed conditions may lead to a different conclusion, for example
 - The advantage of dose protraction on the rapeutic gain diminishes for tumors with $\alpha/\beta \leq$ those of normal tissues (e.g., prostate Ca)
 - Additional normal tissue sparing achievable in a HDR treatment could potentially improve the therapeutic ratio of the HDR technique to the level of LDR treatment

Multi-fraction HDR vs. LDR for cervix

- influence of normal tissue sparing

- An illustrative sample by Dale:
 - LDR reference treatment
 - 60 Gy in 72 hrs
 - $\alpha/\beta = 10$ Gy for tumor & 3 Gy for rectum, $t_{1/2} = 1.5$ hr, no repopulaiton
 - Rectum receive 80% of prescription dose (f = 0.8)

$$--> BED = f \cdot D \left[1 + \frac{f \cdot D}{(\alpha / \beta)} \frac{2}{(\mu T)^2} (e^{-\mu T} + \mu T - 1) \right]$$

- BED_{tumor} (LDR) = 81.0 Gy
- BED_{rectum} (LDR) = 92.8Gy

 HDR using 6 fractions with matching tumor BED

$$BED = 6 \cdot f \cdot d \left[1 + \frac{f \cdot d}{(\alpha / \beta)} \right] = 81.0$$

•
$$d = 7.6 \text{ Gy} \quad (f = 1.0)$$

• BED_{rectum} = 111.6 Gy
$$(f = 0.8)$$

Additional sparing needed to achieve LDR BED_{rectum}

$$BED = 6 \cdot f \cdot d \left[1 + \frac{f \cdot d}{(\alpha / \beta)} \right] = 92.8$$
• $f = 0.72$

• An extensive analysis by Brenner & Hall for fractionated HDR and LDR brachytherapy of the cervix also reached a similar conclusion

Dale RG, BJR 63, 290-294; Brenner D, et al., 64, 133-141

Yale school of medicine

Permanent interstitial brachytherapy (PIB) - Protracted irradiation with declining dose rate

• For example, PIB for early-stage prostate cancer

Radionuclide	<energy> (keV)</energy>	HVL (mm Pb)	Half-Life (days)	
125 I	28.5	~0.03	60	
¹⁰³ Pd	21	~0.01	17	
¹³¹ Cs	30.4	~0.03	9.7	

- With unique dose delivery patterns

Yale school of medicine

BED for PIB: The Dale Formalism

• Recall the equation: $BED = D(T_{eff})RE(T_{eff}) - \frac{\ln 2 \cdot (T_{eff} - T_k)}{\alpha T}$

$$\operatorname{RE}(T) = 1 + \frac{D(T)}{(\alpha / \beta)} \times \frac{\lambda}{\mu - \lambda} \frac{2}{(1 - e^{-\lambda T})^2} \left\{ \frac{1}{2\lambda} (1 - e^{-2\lambda T}) - \frac{1}{\lambda + \mu} (1 - e^{-(\mu + \lambda)T}) \right\}$$

$$G(T) - \text{dose protraction factor}$$

 It captures the interacting effects of changing dose rate during dose delivery with sublethal damage repair and cell repopulation

Basic assumptions:

- For uniform dose distribution or dose at a point of interest
- Radiobiological properties by five parameters (α , β , μ , γ , T_k)
- Mono-exponential repair kinetics
- Uniform proliferation rate
- BED evaluated at the "effective treatment time", *T_{eff}*, is adequately representative of biological effects produced by the implant

(Dale RG, *BJR* **62**, 241-244, 1989; & **58**, 515-528, 1985)

BED for PIB: The Dale Formalism

• Definition of "effective treatment time", T_{eff}

(¹²⁵I, D=145 Gy, $t_{1/2}$ =0.27 hr, α =0.15 Gy⁻¹, α/β =3Gy, T_k =0)

- In absence of cell proliferation:

$$\operatorname{BED}\Big|_{T=\infty} = D \times \left\{ 1 + \frac{\lambda}{\lambda + \mu} \frac{D}{\alpha / \beta} \right\}$$

- In presence of cell proliferation:
 - BED becomes negative at *T* = ∞
 - *A T*_{*eff*} is defined as the time at which

the rate of cell kill equal the rate of cell repopulation

$$T_{eff} = T_{avg} \ln \left(\alpha D \frac{T_d}{T_{1/2}} \right)$$

PIB for prostate cancer: Influence of radioactive source

- For monotherapy, the prescribed dose for different sources are usually different
 - Why using different doses? Are they biologically equivalent?

Radionuclide	<energy> (keV)</energy>	Half-Life (day)	Total Dose (Gy)	Initial DR (cGy/h)	T _{eff} (day)	BED (Gy)
125 I	28.5	60	145	7	236	111
¹⁰³ Pd	21	17	125	21	94	115
¹³¹ Cs	30.4	9.7	120	36	61	117
			110			107

- Let's perform BED calculation using the AAPM TG-137 recommended parameter set (α =0.15 Gy⁻¹, α/β =3 Gy, $t_{1/2}$ =0.27 hr, T_d = 42 days, T_k =0)
- It seems the BEDs are reasonably similar for this particular set of radiobiological parameters

PIB for prostate cancer: Influence of radioactive source - dependence on tumor growth rate

– What happens if some tumors grow at different rates?

⇒ Relative effectiveness depends on tumor growth rate: ¹²⁵I relative more effective for slow growing tumor, ¹⁰³Pd and ¹³¹Cs are better for fast growing tumors

PIB for prostate cancer: Influence of radioactive source - interplay with treatment-induced temporal variations

- Is the source with shorter decay half-life always better in practice?
 - "Yes", for static implants
 - "?", when tumor/source position varies during treatment

- Severity & time-to-resolution vary widely from patient to patient (magnitude: 30 to 100%; resolution half-life: 4 to 25 days)*
- Edema forces the sources to deviate from their planned locations
- It can have a significant impact on the actual dose delivered to patient **

*e..g., Waterman F, et al., IJROBP 1998; **e.g., Yue N, et al., IJROBP 1999 & Chen Z, et al., IJROBP, 2000

PIB for prostate cancer: Influence of radioactive source - interplay with procedure-induced prostate edema

• Edema-induced reduction in BED as a function of edema magnitude and resolution hale-life for pre-planned prostate implant

Figure 1. Edema-induced variations in the BED for prostate brachytherapy using ¹³¹Cs, ¹²⁵I and ¹⁰³Pd sources ($\alpha = 0.15 \text{ Gy}^{-1}$, $\alpha/\beta = 3.0 \text{ Gy}$, $T_p = 42 \text{ days}$ and repair half-time = 0.27 h).

 \Rightarrow Source with shorter decay half-life and lower photon energy is more sensitive to edema induced reduction in BED

(Chen Z, et al, PMB, 2011; 56:4895-4912; IJROBP, 2008; 70:303-310)

Yale school of medicine

BED for PIB: Concerns for *proliferating* tumors (?)

• Zaider et al. introduced an iso-effective dose (IED) formalism that is mathematically well behaved in the limit of $t \rightarrow \infty$

$$IED(t) = -\frac{1}{\alpha} \log \left[\frac{S_0(t)e^{(b-d)t}}{1 + bS_0(t)e^{(b-d)t} \int_0^t \frac{du}{S_0(u)e^{(b-d)u}}} \right]$$

- $S_0(t)$: cell survival probability at time t, in absence of cell proliferation
- *b*: cell birth rate
- *d*: spontaneous cell death rate
- $b d: = \ln(2)/T_d$

(Zaider M et al., PMB, 2000; 45:279-293 & 2007; 52:6355-6362)

BED vs. IED: Permanent prostate brachytherapy

• Impact on deriving iso-effective prescription dose for new sources:

- The difference becomes greater for faster-growing tumors using source of shorter half-life
 - For $T_d = 42$ days: the difference is 2.7% & 3.5% lower for ¹⁰³Pd and ¹³¹Cs, respectively
 - For $T_d = 5$ days: the difference is 8.4% & 13.4% lower for ¹⁰³Pd and ¹³¹Cs, respectively

(Chen Z and Nath R, *IJROBP*, 2012; **84**:S755)

Concluding Remarks

• "Essentially, all models are wrong, but some are useful"

- 1987, George E.P. Box

- When **used properly**, radiobiological modeling in brachytherapy can provide a potentially useful tool for
 - performing efficient pre-clinical evaluation of the relative clinical effects of different dose delivery patterns
 - conducting meaningful comparison of the treatment outcomes of different techniques and their efficacy relative to EBRT
 - optimizing the treatment efficacy of brachytherapy in either monotherapy or combined modality settings.

Thank You!

