MRI Guided GYN Brachytherapy: Clinical Considerations

AAPM
Junzo Chino MD
Duke Radiation Oncology
8/8/2013

Disclosures

none

Learning Objectives

- Historical Context: Film based Brachytherapy
- Advantages of modern imaging for cervical cancer (CT, MRI)
- GEC-ESTRO recommendations for contouring on MRI
- Clinical results with image guided brachytherapy (IGBT)
- Logistics and challenges of implementing IGBT at our institution

Intracavitary Brachytherapy: Cervical Cancer

- A solution to the problem of giving high dose to a highly mobile tumor in close proximity to bladder and rectum
- 3D conformal, IMRT and SBRT boosts are severely limited by intrafraction and interfraction movement
- Film based treatment has resulted local control rates of ~80%, with grade 3-4 late toxicity of ~15% (RTOG 9001)

LDR T&O set

LDR planning

LDR planning

Brachytherapy Doses LDR

- Total doses should be summed with Prior External Beam
- Point A doses should be 75-90 Gy
- Point B doses should be 55-60 Gy
 - May boost sidewall with external beam for IIB disease to an additional 5-15 Gy
- Bladder point should be limited to 75Gy
- Rectal points should be limited to 70Gy

Modern Imaging for Cervical Cancer: Part 1 CT

CT compatible applicators

Conventional LDR FSD applicator

Weeks CT compatible Applicator

CT-Based Planning (OAR)

- Weeks & Montana, developed CT compatible
 T&O set in 1997 at Duke
 - Systematic underestimation of max bladder and rectal doses with Film based plans
- MD Anderson series from 2005
 - rectal point a reasonable surrogate for rectal max
 - bladder point resulted in systematic underestimation of bladder max

Film Points vs 3D Max Dose

Rectum

Bladder

CT based Planning (Target)

- Michigan Series (Schoeppel, IJROBP 1994)
 - Film Based plans systematically underdose the CTvisible cervix
- Loyola Series (Gao, Brachytherapy 2010)
 - CT defined volume varied greatly between patients (12ml – 39ml)
 - With Film based plans, the cervical dose was 40% lower than prescription in those with high volumes.

Point A isodose

Minimum CTV dose relative to point A:

- **36%**
- **49%**
- **96%**
- **103%**
- **134%**

CTV's assessed from MRI 5 pt's

CT-Based Planning: Limitations

- CT is not to be ideal at determining extent of disease
- Preoperative CT studies show:
 - 50-65% accurate for extent within cervix
 - 75-80% accurate for determining extension outside of cervix

Modern Imaging for Cervical Cancer: Part 2 MRI

T2 weighted MRI as a Imaging Standard

- MRI superior in same preoperative studies compared to CT
 - 75-90% accurate for extent within cervix
 - 85-95% accurate for extension beyond cervix
- Viswanathan (IJROBP 2007) compared CT contours to MRI
 - Found systematic overestimation of cervix with CT
 - 20% median deviation between CT and MRI
 - CT overestimates in the lateral dimension

CT vs MRI

CT vs MRI

GEC-ESTRO recommendations for MRI contouring

- GTV: all MRI visible tumor at time of brachytherapy
- HRCTV: GTV + cervix + "grey zones" of indeterminate signal (usually in parametrium)
- IRCTV: HRCTV + 10mm margin, restricted to 5mm anterior and posterior + initial extent of disease
- Normal tissue including bladder, rectum, sigmoid

C. Haie-Meder et al. / Radiotherapy and Oncology 74 (2005) 235-245

Clinical Results: Vienna Group

- 141 women with IB-IVA cervical cancer treated with 45-50.4 Gy, concurrent cisplatin
- First 3 years, dose to HRCTV/IRCTV recorded but not used for optimization
- Last 3 years, dose optimized to cover HRCTV/IRCTV

Clinical Results: Vienna

- HRCTV D90
 - <87Gy resulted in local control of 80%</p>
 - >87Gy resulted in local control of 96%
- HRCTV D100 (D98)
 - <66Gy resulted in local control of 83%</p>
 - >66Gy resulted in local control of 93%
- IRCTV dose was not significantly associated with clinical outcome

Toxicity: Vienna

- Same group demonstrated association with late toxicity
- Rectum Grade 2-4 late toxicity:
 - D2cc 67GY = 5%
 - D2cc 78Gy = 10%
 - D2cc 90Gy = 20%
- Bladder Grade 2-4 late toxicity
 - D2cc 70Gy = 5%
 - D2cc 101Gy = 10%
 - D2cc 134Gy = 20%
 - No small bowel or sigmoid association noted

Volume	2D point analogue	3D dosimetric	Dosimetric Goal/Limit	Endpoint	Level of Evidence for
		measures			Goal/Limit
HRCTV (tumor	Point A (2cm	D90	D90 > 75-	Pelvic	Strong
+ cervix	superior to	D100	85Gy	Control	
+parametrial	ovoids, 2cm		D100 > 65Gy	>90%	
extent at time	lateral to				
of implant)	tandem)				
IRCTV (HRCTV	Closest	D90	D90 > 60-	Pelvic	Weak
+margin,	analogue is		75Gy	Control	
+initial extent	Point B (3cm			(no firm	
of disease)	lateral to			data)	
	point A) for				
	IIB disease				
Bladder	Bladder	D2cc	D2cc <90Gy	G2-4 late	Strong
	point (most			toxicity <5-	
	dependent			10%	
	point of foley				
	balloon)		53 .750	62.41.	C
Rectum	Rectal point	D2cc	D2cc <75Gy	G2-4 late	Strong
	(5mm			toxicity <5-	
	posterior to			10%	
	vaginal				
C :	packing)	D2	D2	NI - C')
Sigmoid	None	D2cc	D2cc <75Gy	No firm data	Weak
Small Bowel	None	D2cc	D2cc <65Gy	No firm	Weak
				data	

STIC trial: Film vs 3D

- 801 women (705 evaluable) treated with either film based or IGBT (mostly CT)
- Prospective but non-randomized
- Local control @ 2 years
 - 73.9% Film Based
 - 78.5% IGBT (p=0.003)
- Grade 3-4 toxicity
 - 22.7% Film based
 - -2.6% IGBT (p=0.002)

A European study on MRI-guided <u>brachytherapy</u> in locally advanced <u>cervical</u> cancer

EMBRACE

(ENDORSED BY GEC ESTRO)

EMBRACE: How often can HRCTV and OAR constraints be met?

- 134 cases were reviewed and non-optimized plans were generated (equal time in all activated dwell positions)
- Comparison was made between tandem only vs tandem and vaginal loading (nonoptimized)

How good are non-optimized plans?

Percent of plans meeting HRCTV constraint

Percent of plans exceeding OAR tolerance

	HRCTV D90 IB1	HRCTV D90 IB2	HRCTV D90 IIA	HRCTV D90 IIB	HRCTV D90 IIIB	D2cc Bladder	D2cc Rectum	D2cc Sigmoid
Tandem only	88%	67%	33%	44%	31%	36%	3%	30%
Tandem + ring or ovoids	88%	75%	50%	90%	75%	45%	22%	33%

Therefore: small tumors are often adequately treated by uniform loading – more extensive disease may need additional measures (optimization / paracervical needles)

Vienna Applicator

Vienna Applicator

Vienna Applicator

Applicator Selection

- T&R will cover most small tumors
 - Posterior and anteriorly based tumors may benefit from loading the anterior and posterior ring
- T&O: lateral coverage for larger cervical disease
- Vienna: parametrial disease
- Tandem Cylinder/Miami: thin vaginal disease
- Syed template + Tandem: thick vaginal disease

Conclusions from published data

- MRI is superior to CT and film based delineation of tumor
- Doses to MRI based volumes are associated with clinically relevant outcomes
- Doses to the contoured Bladder and Rectum are associated with late toxicity
- IGBT as a technique is associated with decreased toxicity with the same or improved control

Emerging modalities

- DCE-MRI: may reveal areas of poor perfusion, which may be high risk regions
- DW-MRI: may reveal areas of high cellular density (restricted diffusion) which may be high risk areas
- PET-CT: prognostic utility is well established, but uncertain for utility with IGBT
- US: used clinically for decades, but uncertain as of yet how best to integrate this highly accessible modality in the frame work of IGBT

Questions

- Is it exportable?
- Are the metrics currently reported the best?
- Is the method of dose optimization relevant?
- Are there other organs/volumes that should be contoured?
- What are the logistical challenges to making the switch from FBBT to IGBT?

Our Experience

- Film Based through 2005 (LDR)
- CT based IGBT was used throughout 2006-2010 (LDR)
- 2011-present MRI based IGBT used (HDR)

2005

- T&O placed in OR
- Orthogonal Films taken
- Points chosen (A, B, rectum, and bladder)
- Plan devised
- Patient loaded on floor
- 70-80 hours in hospital immobilized
- Implant unloaded, T&O removed

2013

- Patient brought to clinic
- Anesthesia induced (level similar to that used during colonoscopy)
- Applicator selected and placed
- CT immediately obtained (r/o perforation)
- MRI obtained
- CT/MRI fused
- Physician contours fused images (HRCTV on MRI, OAR on CT with MRI assist)
- Treatment plan created
- QA performed
- Treatment delivered
- Applicator removed
- Discharge from clinic

x5

Physical Layout

Team Members

- Radiation Oncology (1 attending, 1 resident)
- Anesthesiologist (1 attending +/- 1 CRNA)
- Physics (2 faculty, 1 resident)
- CT/MR operators (3+ therapists/techs)
- Nursing (1 RN + support at recovery)
- It is critical that this be a stable team, for both patient safety, and for efficient use of time

Average Case

- 7:30 am Patient arrives obtain IV access, premeds (RN)
- 8:00 am Patient to suite, anesthesia induced (MD)
- 8:15 am Applicator selected and placed (MD)
- 8:30 am Anesthesia recovery (RN)
- 8:45 am CT scan (Tech)
- 9:15 am MRI scan (Tech)
- 10:00 am MRI/CT fused (Physics)
- 10:30 am Physician contours (MD)
- 11:00 am Plan optimized (Physics/MD)
- 11:15 am Plan approved (MD)
- 11:30 am Plan/Afterloader QA (Physics)
- 12:00 pm Patient treated (MD/Physics)
- 12:15 pm Applicator Removed (MD)
- 1:00 pm Patient discharged (RN)

Time Requirement

The median time from start of imaging to treatment delivery was 3.6 hours (3.3 - 3.9 hours).

Why plan each time?

 Eliminating the MRI on subsequent fractions would improve throughput and lessen burden on team

Intrafraction Variations

- Applicator change
- HRCTV/IRCTV variations
- OARs variations

Changes in HRCTV contours

Blue box = range of HRCTV volumes as contoured at time of treatment

Green box = range of HRCTV volumes when recontoured in single sitting (retrospective)

There remains a significant variation in contouring, which is reduced but not eliminated by a more consistent approach.

Patient with Good Accord

Patient with Minor Variation

Patient with Large Variation

Patient 6 Fraction 2

Pitfalls/Cautions

- Team needs excellent and open communication
- Schedule needs tight coordination
- MDs and Physics need to perform their work safely and efficiently
- Image fusion and applicator reconstruction need to be done with care
- Dose optimization should be approached stepwise from a more standard film based plan
- Particular attention should be paid to QA prior to treatment by all members of team

The Duke Brachytherapy Team

- Oana Craciunescu PhD
- Jing Cai PhD
- Beverley Steffey MS
- Sheridan Meltsner PhD
- Kimberley Maingat RN
- Danielle Raya RN
- + many more therapists, rad techs, and support staff

