Uncertainties and Quality Assurance of Localization and Treatment in Lung SBRT

Jing Cai, PhD
Duke University Medical Center

2013 AAPM 55th Annual Meeting, Educational Course, Therapy Track, MOC SAM Program
Disclosure

I have received research funding from NIH, the Golfers Against Cancer (GAC) foundation, and Philips Health System.
Acknowledgements

Duke Radiation Oncology

Fang-Fang Yin, PhD
Chris R. Kelsey, MD
David S. Yoo, MD, PhD
James Bowsher, PhD
Lei Ren, PhD
Jim Chang, PhD
Yun Yang, PhD
Yunfeng Cui, PhD
Zhiheng Wang, PhD
Irina Vergalasova, BS
Suzanne Catalano, BS, CMD
Rhonda May, BS, CMD

Duke Medical Physics Program

Paul Segars, PhD
You Zhang, BS
Cindy Qin, MS
Kate Turner, MS

Lynn Cancer Institute at Boca Raton Regional Hospital

Charles Shang, PhD

Duke Radiation Safety

Fan Zhang, MS
Imaging in Lung SBRT

CT
MRI
PET

Fluoroscopy
Optical
X-ray
DTS
CBCT
SPECT

CT
MRI
PET

Imaging Simulation (3D/4D)
Treatment Planning
Patient Specific Quality Control
On-Board Imaging (3D/4D)
Treatment Delivery
Treatment Assessment
The Process: Image Guidance

- **X-Ray**
- **(ExacTrac)**
- **CBCT**
- **Fluoroscopy**
- **(X-Ray/CBCT)**
- **Cine-MV, X-Ray**
- **X-Ray/CBCT**
- **RPM**
Free-breath 3D CBCT Match

Wang et al Ref J 2007
Uncertainties in lung SBRT IGRT

- Tumor volume in CBCT
- Soft-tissue contrast
- Inter-observer variations
- Reproducibility of tumor location at breath-hold
- Internal-external motion correlation
- Changes of tumor size and motion
- Changes of anatomy
- Shifts and rotations in matching
-
Which CT for CBCT Matching?

4DCT-AIP v.s. CBCT
Which CT for CBCT Matching?

3D FB-CT v.s. CBCT
CBCT Matching: Tiny Tumor

Tumor Size ~ 5 mm; Tumor Motion ~ 20 mm
CBCT Matching: Large Anatomical Change

Pleural effusion at Sim
Largely disappeared at 1 fx

Re-simed, Re-planned
CBCT ITV Uncertainty

ITV at different Inspiration/Expiration (I/E) Ratio

1.0 0.52 0.35 0.26 0.21

CBCT ITV Uncertainty

<table>
<thead>
<tr>
<th>Tumor</th>
<th>Free-Breathing ITV (cm^3)</th>
<th>4D ITV (cm^3)</th>
<th>Volume Underestimation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.78</td>
<td>2.97</td>
<td>40.1</td>
</tr>
<tr>
<td>B</td>
<td>35.62</td>
<td>46.98</td>
<td>24.2</td>
</tr>
</tbody>
</table>

Vergalasova et al, Med Phys 2011
Target Matching Uncertainty

Turner et al
2013 AAPM
Image Registration Uncertainty: Inter-observer Variation

Table 2 Registration differences between institutions and reviewers (for different protocols)

<table>
<thead>
<tr>
<th>Protocol no. (disease site)</th>
<th>No. of datasets</th>
<th>Absolute value of difference of shifts (mm), mean ± SD (range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0915 (lung)</td>
<td>71</td>
<td>Left-right: 1.8 ± 1.2 (0.0-6.4) Superior-inferior: 2.0 ± 1.1 (0.0-6.9) Anterior-posterior: 2.0 ± 0.9 (0.0-5.0)</td>
</tr>
<tr>
<td>0813 (lung)</td>
<td>21</td>
<td>Left-right: 1.7 ± 0.8 (0.1-5.1) Superior-inferior: 2.2 ± 1.0 (0.3-5.0) Anterior-posterior: 2.0 ± 1.1 (0.1-4.8)</td>
</tr>
</tbody>
</table>

MVCT for Lung SBRT IGRT

![Imaging modalities](Day1, Week2, Week4)

Siker et al, Red J, 2006

Table 3 Registration differences between institutions and reviewers (for different imaging modalities)

<table>
<thead>
<tr>
<th>Imaging modality</th>
<th>No. of datasets</th>
<th>Left-right</th>
<th>Superior-inferior</th>
<th>Anterior-posterior</th>
</tr>
</thead>
<tbody>
<tr>
<td>kV CBCT</td>
<td>96</td>
<td>1.7 ± 1.1 (0.0-6.7)</td>
<td>1.6 ± 0.9 (0.0-6.9)</td>
<td>1.7 ± 1.1 (0.0-5.0)</td>
</tr>
<tr>
<td>MVCT</td>
<td>37</td>
<td>1.5 ± 1.0 (0.1-5.1)</td>
<td>3.7 ± 1.7 (0.1-8.2)</td>
<td>1.9 ± 0.9 (0.0-7.3)</td>
</tr>
<tr>
<td>Overall</td>
<td>133</td>
<td>1.7 ± 1.0 (0.0-6.7)</td>
<td>2.2 ± 1.5 (0.0-8.2)</td>
<td>1.8 ± 1.0 (0.0-7.3)</td>
</tr>
</tbody>
</table>

Cui et al, Red J, 2011; 81:305-312.
Question: Which one of the following answers represents the best estimate of the inter-observer variation in image registration in lung SBRT?

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20%</td>
<td>1.</td>
<td>1 mm</td>
</tr>
<tr>
<td>20%</td>
<td>2.</td>
<td>2 mm</td>
</tr>
<tr>
<td>20%</td>
<td>3.</td>
<td>3 mm</td>
</tr>
<tr>
<td>20%</td>
<td>4.</td>
<td>5 mm</td>
</tr>
<tr>
<td>20%</td>
<td>5.</td>
<td>>5 mm</td>
</tr>
</tbody>
</table>
Discussion

Correct Answer:
2. 2 mm

Reference:

Table 2 Registration differences between institutions and reviewers (for different protocols)

<table>
<thead>
<tr>
<th>Protocol no.</th>
<th>disease site</th>
<th>No. of datasets</th>
<th>Absolute value of difference of shifts (mm), mean ± SD (range)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Left-right</td>
</tr>
<tr>
<td>0915 (lung)</td>
<td>71</td>
<td>1.8 ± 1.2 (0.0-6.4)</td>
<td>2.0 ± 1.1 (0.0-6.9)</td>
</tr>
<tr>
<td>0813 (lung)</td>
<td>21</td>
<td>1.7 ± 0.8 (0.1-5.1)</td>
<td>2.2 ± 1.0 (0.3-5.0)</td>
</tr>
</tbody>
</table>
Rotational Shifts in Lung SBRT

Net Average of Pitch & Roll

<table>
<thead>
<tr>
<th></th>
<th>Pitch</th>
<th>Roll</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average °</td>
<td>0.10</td>
<td>-0.10</td>
</tr>
<tr>
<td>SD °</td>
<td>1.07</td>
<td>0.65</td>
</tr>
</tbody>
</table>

Absolute Corrections of Pitch/Roll

<table>
<thead>
<tr>
<th></th>
<th>Pitch</th>
<th>Roll</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute Mean °</td>
<td>0.87</td>
<td>0.60</td>
</tr>
<tr>
<td>Variance °</td>
<td>0.33</td>
<td>0.30</td>
</tr>
<tr>
<td>Cases >0.5 °</td>
<td>69.2%</td>
<td>50.0%</td>
</tr>
<tr>
<td>Pitch or Roll >0.5 °</td>
<td>89.4%</td>
<td></td>
</tr>
<tr>
<td>Pitch or Roll >1.0 °</td>
<td>51.0%</td>
<td></td>
</tr>
</tbody>
</table>
Dosimetric Effects of Rotations

- 95.6% of all differences were <1% or <1Gy.
- Overall small dosimetric effects of uncorrected rotations.
Dosimetric Effects of Rotations

- Large inter-subject variations at large rotation angles.
- Up to 4% reduction in PTV coverage, 6 Gy increase in cord D0.35cc, and 4 Gy in Esophagus D0.35cc observed.
Cine MV: tumor motion during TX

Tumor motion during 5-fx lung SBRT

Zhang et al, RPO 2013

4D-CT

Mean R_{MV} (mm)

$Y = 0.8X$

$r = 0.50$

Max R_{MV} (mm)

$Y = 0.7X$

$r = 0.88$

$Y = 1.7X$

$r = 0.49$

$Y = 1.3X$

$r = 0.83$
Intra-fractional Mean Tumor Position Shift

- Intra-fractional variation:
 - AP: 0.0 ± 1.7 mm
 - ML: 0.6 ± 2.2 mm
 - SI: −1.0 ± 2.0 mm
 - 3D: 3.1 ± 2.0 mm

- 3D vector variation:
 - > 2mm in 67.8%
 - > 5mm in 14.3%

- Depending on immobilization (Range: 2.3 – 3.3 mm)
 - Body Frame < Alpha Cradle < Body Fix < Wing Board

409 Patients
427 Tumors
1593 Fractions

Intrafraction Variation
Change of Tumor Size During Lung SBRT

- Initial tumor size: 0.7-7.3 cm
- Change of tumor diameter:
 Range: -34.2% to 33.0%
 Mean: -7.9 ± 11.45%

Qin et al, Red J, 2013

40 lung SBRT patients
ExacTrac

<table>
<thead>
<tr>
<th>ExacTrac 6D v.s. CBCT 6D</th>
</tr>
</thead>
<tbody>
<tr>
<td>ML: 1.06 mm</td>
</tr>
<tr>
<td>Pitch: 1.22°</td>
</tr>
<tr>
<td>AP: 1.43 mm</td>
</tr>
<tr>
<td>Row: 0.64°</td>
</tr>
<tr>
<td>SI: 1.43 mm</td>
</tr>
<tr>
<td>Yaw: 1.66°</td>
</tr>
</tbody>
</table>

- Small but maybe clinically significant discrepancies between ExacTrac X-ray 6D and CBCT 6D match

Chang et al, Radiother Oncol, 2010
Cyberknife

- **Targeting error**: 0.1 – 0.3 mm
- **Correlation error**: 0.3 – 2.5 mm
- **Prediction error**: 1.5 ± 0.8 mm
- **Total error**: 0.7 – 5.0 mm

Pepin et al, Med Phys. 2011
Question: Which one of the following answers represents the best estimate of the mean intra-fractional 3D tumor position shift in lung SBRT?

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20%</td>
<td>1 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>20%</td>
<td>2 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20%</td>
<td>3 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>20%</td>
<td>5 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>20%</td>
<td>>5 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Correct Answer:
3. 3 mm

Reference:
Onboard DTS Imaging

Free-breathing Reference DTS

Phase-matched Reference DTS

On-board Acquired DTS

Better Match

Courtesy from Dr. Ren of Duke University
MRI for Image Guidance
On-Board SPECT

- SPECT on robotic arm
- Molecular targeting
- Multi-Pinhole collimation

4-min scans
7, 10 mm hot spots

Courtesy from Dr. Bowsher of Duke University
Summary

- Uncertainties exist in each step of image guidance of lung SBRT
- Understanding root causes and characteristics of these uncertainties is important for successful implementation of lung SBRT
- Next generation of on board imaging techniques has the potential to minimize uncertainties of image guidance of lung SBRT