U

Educational Course, Therapy Track Wednesday, August 7, 8:00 - 9:55 am Quality Control of Lung SBRT: from 4D Simulation to 4D Verification

Learning Objectives:

- 1. Provide an evidence-based systematic review of uncertainties during lung SBRT
- 2. Discuss the root causes of the uncertainties and corresponding quality control strategies
- 3. Present data-driven practical and effective solutions to minimize the uncertainties

UukeMedicine

Speaker List and Topics

Торіс	Speaker (Institution)				
Uncertainty and QA for simulation and planning	Fang-Fang Yin, PhD Duke University				
Uncertainty and QA for target delineation	Jeffrey Bradley, MD Washington University				
Uncertainty and QA for delivery techniques	Stanley Benedict, PhD UC Davis Health System				
Uncertainty and QA in localization and tacking in the treatment room	Krishni Wijesooriya, PhD University of Virginia				
Uncertainty and QA for machine and patient specific QA	Jing Cai, PhD Duke University				

U

Uncertainty and QA for Simulation and Planning

Fang-Fang Yin, PhD Duke University Medical Center

U DukeMedicine

Disclosure

Some of research works are partially supported by grants from NIH and Varian Medical Systems.

Acknowledgements

Team faculty and staff in radiation oncology department, Duke University, especially to: Dr. Jing Cai, Dr. Christopher R. Kelsey

U DukeMedicine

Approaches to Minimize Uncertainties

- Minimize motion
 - Patient motion: immobilization
 - Organ motion: motion management, organ "immobilization"
- Minimize target volume delineation
 - Better imaging:
- Improve dose calculation
 - Better algorithm
 - Better images
 - Interplay
- · Ensuring the accuracy phantom based process QA
- U DukeMedicine

Patient Motion: Immobilization

Body Immobilization - Body Fix - Body frame - Styrofoam -----

Active Breathing Control

The residual errors of GTV ML: 0.3±1.8 mm AP: 1.2±2.3 mm SI: 1.1±3.5 mm

Cheung, et al, Red J 2003

- Remains some inter-breath hold variability in peripheral lung
- Limited reduction of PTV margin
- DukeMedicine

Abdominal Compression

3.5 mm for lower lobe tumors 0.8 mm for upper/middle lobe

Sometime, compression increased tumor motion

Mean ITV reduction: 3.6 cc for lower lobe lesions 0.2 cc for upper/middle lobe lesions

Dosimetric gain for lung sparing was not clinically relevant

U DukeMedicine

Bouilhol et al, 2012, Phys Med

Organ "Constraints" in SBRT

U DukeMedicine

Total intravenous anesthesia (TIVA)

High-frequency jet ventilation (HFJV)

Animal study: Motion range: < 3 mm

Yin et al 2001 Red J:

"Extracranial radiosurgery: Immobilizing liver motion using high-frequency jet ventilation and total intravenous anesthesia"

Organ Motion: Surrogates/Imaging Anatomical Needle

surrogates	Diameter	Needle Gauge		Prostate		Breas	t Lung	ng Cervix		iver
 Diaphragm Bony structures Tumor Implanted surrogates Cold condo 	0.45 mm	21 g		1 cm 2 cm		1 cm 2 cm	1 cm 2 cm 3 cm	1 cm		
	0.85 mm	18 g		1 cm 2 cm		1 cm	1 cm 2 cm 3 cm	1 cm 2 cm	1 cm	
	1.15 mm	17 g		1 cm 2 cm		1 cm		1 cm 2 cm		
> Coils					Ima	aging	Modalit	у		
Devices			Diame		CT-kV		Fluoro- TRUS-MR	I Portal	EPID- Portal-MV	
U DukeMedicine			0.45	mm		Y	Y			
			0.85	mm		Y	Y	Y		
			1.15	mm			Y	Y		

Contouring Variation in NSCLC

U DukeMedicine

Courtesy from Dr. Kong, U. Michigan

ITV = GTV_FB + GTV_MIP
 PTV = ITV + Setup Margin (3-5mm)
 DukeMedicine

QA: Which CT for Dose Calculation?

- AIP vs. FB
 - Dosimetric similarity
 - Target volume better for AIP
- AIP vs. MIP
- MIP has slightly better target coverage
- MIP datasets are prone to under- or overestimate both OAR and target volumes
- AIP dataset is more suitable for planning

U DukeMedicine

Tian, et al, Med Phys 2012

Caution: Inhomogeneity Correction

With heterogeneity corrections applied:

- Volume of PTV receiving 60 Gy or more (V60) decreased on average 10.1% (SE=2.7%) from 95% (p=0.001)
- Maximum dose to any point 2 cm or greater away from the PTV increased from 35.2 Gy (SE =1.7 Gy) to 38.5 (SE=2.2 Gy)

Dosimetric Evaluation of Heterogeneity Corrections for RTOG 0236: Stereotactic Body Radiation Therapy of Inoperable Stage I/II Non-Small Cell Lung Cancer

Ying Xiao, Ph.D.^{1*} Lech Papiez, Ph.D.,² Rebecca Paulus, B.S.,³ Robert Timmerman, M.D.,² William L. Straube, M.S.,⁴ Walter R Red J 2008 ⁴, Jeff Michalski, M.D.,⁴ and James M. Galvin, D.Sc.¹

Summary

- Treatment uncertainty could be reduced
 - Proper selection immobilization method
 - Patient specific motion management strategy
 - Comprehensive patient-specific plan design
- Each step needs to be carefully validated
- A phantom-based QA process could provide a tool to validate the treatment.

U DukeMedicine

Thank you for your intention!