Quality Control of Lung SBRT: from 4D Simulation to 4D Verification

Learning Objectives:
1. Provide an evidence-based systematic review of uncertainties during lung SBRT
2. Discuss the root causes of the uncertainties and corresponding quality control strategies
3. Present data-driven practical and effective solutions to minimize the uncertainties

Speaker List and Topics

<table>
<thead>
<tr>
<th>Topic</th>
<th>Speaker (Institution)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncertainty and QA for simulation and planning</td>
<td>Fang-Fang Yin, PhD Duke University</td>
</tr>
<tr>
<td>Uncertainty and QA for target delineation</td>
<td>Jeffrey Bradley, MD Washington University</td>
</tr>
<tr>
<td>Uncertainty and QA for delivery techniques</td>
<td>Stanley Benedict, PhD UC Davis Health System</td>
</tr>
<tr>
<td>Uncertainty and QA in localization and tacking in the treatment room</td>
<td>Krishni Wijesooriya, PhD University of Virginia</td>
</tr>
<tr>
<td>Uncertainty and QA for machine and patient specific QA</td>
<td>Jing Cai, PhD Duke University</td>
</tr>
</tbody>
</table>

Uncertainty and QA for Simulation and Planning
Fang-Fang Yin, PhD
Duke University Medical Center

Disclosure
Some of research works are partially supported by grants from NIH and Varian Medical Systems.

Acknowledgements
Team faculty and staff in radiation oncology department, Duke University, especially to: Dr. Jing Cai, Dr. Christopher R. Kelsey

Workflow for Lung SBRT

Salama, Kirkpatrick, and Yin
Nature Reviews/Clinical Oncology 2012

Uncertainties in Simulation and Planning

- Patient and motion constraints
 - Immobilization consideration
 - Surrogates (if applicable)
- Motion management
 - 3D-FB, 3D-BH, 4D-10 phase
 - MAX-IP (MIP), AVE-IP (AIP), MIN-IP (MinIP)
- Image fusion/interpolation
- Tumor ITV delineation based on 4DCT
- Interplay effect
 - tumor motion and MLC leaf motion
- Dose calculation
Approaches to Minimize Uncertainties

- Minimize motion
 - Patient motion: immobilization
 - Organ motion: motion management, organ “immobilization”
- Minimize target volume delineation
 - Better imaging:
- Improve dose calculation
 - Better algorithm
 - Better images
 - Interplay
- Ensuring the accuracy – phantom based process QA

Patient Motion: Immobilization

- Body Immobilization
 - BodyFix
 - Body frame
 - Styrofoam

Goals for immobilization:
- To minimize patient and organ motion
- Comfortable, stable, reproducible, or predictable motion

IGRT does not replace immobilization, only checks and monitors motions

Active Breathing Control

- The residual errors of GTV
 - ML: 0.3±1.8 mm
 - AP: 1.2±2.3 mm
 - SI: 1.1±3.5 mm

- Remains some inter-breath hold variability in peripheral lung
- Limited reduction of PTV margin

Abdominal Compression

- Mean motion reduction:
 - 3.5 mm for lower lobe tumors
 - 0.8 mm for upper/middle lobe

- Sometime, compression increased tumor motion

- Mean ITV reduction:
 - 3.6 cc for lower lobe lesions
 - 0.2 cc for upper/middle lobe lesions

- Dosimetric gain for lung sparing was not clinically relevant

- Boullhol et al, 2012, Phys Med

Organ “Constraints” in SBRT

- Total intravenous anesthesia (TIVA)
- High-frequency jet ventilation (HFJV)

- Animal study:
 - Motion range: < 3 mm

Organ Motion: Surrogates/Imaging

- Anatomical surrogates
 - Diaphragm
 - Bony structures
 - Tumor
- Implanted surrogates
 - Gold seeds
 - Coils
 - Devices

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Needle Gauge</th>
<th>Prostate</th>
<th>Breast</th>
<th>Lung</th>
<th>Cervix</th>
<th>Liver</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.45 mm</td>
<td>21 g</td>
<td>1 cm</td>
<td>1 cm</td>
<td>1 cm</td>
<td>1 cm</td>
<td>1 cm</td>
</tr>
<tr>
<td>0.85 mm</td>
<td>18 g</td>
<td>1 cm</td>
<td>2 cm</td>
<td>1 cm</td>
<td>1 cm</td>
<td>1 cm</td>
</tr>
<tr>
<td>1.15 mm</td>
<td>17 g</td>
<td>1 cm</td>
<td>2 cm</td>
<td>1 cm</td>
<td>1 cm</td>
<td>2 cm</td>
</tr>
</tbody>
</table>

Imaging Modality

<table>
<thead>
<tr>
<th>Diameter</th>
<th>CT-kV</th>
<th>Fluoro-TAS/US</th>
<th>EPID-Portal-kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.45 mm</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>0.85 mm</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>1.15 mm</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

Challenges:
- Poor soft-tissue contrast
- Only produce one breathing cycle
- Correlation between internal target and external surrogates
- Imaging dose...

Errors from recorded breathing pattern from surface marker

Deviated Corrected

Errors from recorded breathing pattern from surface marker

Organ Motion: 4DCT Imaging

Verification of 4DCT

Sample Images in Lung SBRT

3D-FB 4DCT-AIP 4DCT-MIP

Jing et al
4DCT Imaging – Treatment Validation

Is 4-D CT enough for motion pattern?

Cine 4D MRI

Portal image

Fluoroscopic imaging

4DCT Validation: XCAT Phantom

• Segars et al. Realistic CT simulation using the 4D XCAT phantom Med. Phys. 35(8). 2008
• Segars et al. 4D XCAT phantom for multimodality imaging research Med. Phys. 37(9). 2010

4DCT Validation: XCAT Phantom

Contouring Variation in NSCLC

Data from multi-institutional pre-clinical trial planning study of RTOG 1106

Target Delineation: Multimodality Imaging

Courtesy from Dr. Kong, U. Michigan

Which CT for ITV Delineation?

ITV_{10phase} (blue line)

ITV_{4D} (green line)

GTV_{30} (red line)

Ge et al, Red J 2012
Tumor ITV Individualization

- 3DCT
 - MIP
 - ITV1
 - ITV3
 - ITV5

- 4DCT
 - 10-phase
 - AIP

With irregular breathing patterns, ITV is always an approximation.

- Tumor Motion
- Tumor Size
- Tumor Location
- Breathing Irregularity

Case: ITV, PTV Determination

- ITV = GTV_FB + GTV_MIP
- PTV = ITV + Setup Margin (3-5mm)

Caution: Proper Margin Design

- Motion
 - Immobilization
 - Motion management
- Motion management technique
 - Breath hold
 - Gated treatment
 - Free breathing
- Delivery technique
 - Dose rate
 - 3D CRT
 - IMRT/VMAT

- Margin should be estimated by imaging.
- Margin should be added for each uncertainty.
- If all have been considered, 5 mm margin is still recommended.

Respiratory Gating Planning

- MIP_GatedPhases
- MIP_AllPhases

- MIP_AllPhases (0%-90%)
- MIP_GatedPhases (30%-70%)
- AIP_AllPhase (0%-90%)
- AIP_GatedPhases (30%-70%)

- ITV, PTV
- CBCT online match
- Dose calculation

How Accurate is 4DCT AIP?

- '4DCT' Truth

Organ Motion: ITV Variation from MIP

- 3 MIP ITV's

- ITV varies with breathing pattern

- Turner, et al AAPM 2012
Organ Motion: ITV Underestimation

<table>
<thead>
<tr>
<th>Tumor</th>
<th>Free-Breathing ITV (cm3)</th>
<th>4D ITV (cm3)</th>
<th>Volume Underestimation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.78</td>
<td>2.97</td>
<td>40.1</td>
</tr>
<tr>
<td>B</td>
<td>35.62</td>
<td>46.98</td>
<td>24.2</td>
</tr>
</tbody>
</table>

Vergalasova et al, Med Phys 2011

Considerations for Planning

- Beam design/Clearance
- Delivery technique
- Dose calculation
- Image guidance strategy
- Motion management strategy
- Verification method
- Treatment adaptation

Beam Design and Planning Techniques

- Dynamic Arcs
- VMAT
- IMRT
- 3D-CRT

Which CT for Dose Calculation?

- FB
- AIP
- MIP

QA: Which CT for Dose Calculation?

- AIP vs. FB
 - Dosimetric similarity
 - Target volume better for AIP
- AIP vs. MIP
 - MIP has slightly better target coverage
 - MIP datasets are prone to under- or over-estimate both OAR and target volumes
- AIP dataset is more suitable for planning

Caution: Inhomogeneity Correction

With heterogeneity corrections applied:

- Volume of PTV receiving 60 Gy or more (V60) decreased on average 10.1% (SE=2.7%) from 95% (p=0.001)
- Maximum dose to any point 2 cm or greater away from the PTV increased from 35.2 Gy (SE =1.7 Gy) to 38.5 (SE=2.2 Gy)

Beam-on timing
Beam-on at different points in breathing period

Differences in delivered dose

Cautions: MLC Interplay Effect

Interplay Between Tumor Motion and MLC Leaf Motion

Patients: 10
GTV: 2.9 – 138.1 cm³
Motion: 0.8 – 2.8 cm

CONCLUSIONS: Both VMAT and IMRT plans experienced negligible interplay effects between MLC sequence and tumor motion. For the most part, the 3D-dose to the GTV and critical structures provided good approximations of the 4D dose calculations.

When Tumor Is Too Small
- PTV margin
- MLC leaf width
- Image guidance
- Small field dose calculation

Lung Motion Displacement Vectors

Deformable Registration
Truth

Deformation from inhalation to exhalation
Cai, et al

Caution: Dose Deformation

Adaptation: Is Replanning for Lung SBRT Needed?

Qin et al, Red J, 2012
Summary

- Treatment uncertainty could be reduced
 - Proper selection immobilization method
 - Patient specific motion management strategy
 - Comprehensive patient-specific plan design
- Each step needs to be carefully validated
- A phantom-based QA process could provide a tool to validate the treatment.

Thank you for your intention!