Challenges and Opportunities of TRUS Based Prostate HDR Brachytherapy

AAPM 2013
Indianapolis, IN
August 5, 2013

I-Chow Hsu, M.D. FACR
University of California San Francisco
High Dose Rate Prostate Brachytherapy

Single High Activity Source
Precise Flexible Dosimetry
Hypofractionation
Clinical Results
Image Guided Prostate HDR Brachytherapy

- TRUS Guided Catheter Insertion
- CT Based Treatment Planning
- HDR Treatment
Image Guided Prostate HDR Brachytherapy

- TRUS Guided Catheter Insertion
- TRUS Based Treatment Planning
- HDR Treatment
Potential Advantages of US Based Planning

Small foot print, available in OR
- ”Real-Time”

Potential for a much quicker turn around if all done in the radiation department

Avoid needle migration

Improved visualization of CTV?
Prostate brachytherapy

HDR prostate monotherapy — Dosimetric effects of implant deformation due to posture change between TRUS- and CT-imaging

Yvette Seppenwoolde*, Inger-Karine Kolkman-Deurloo, Dick Sipkema, Mark de Langen, John Praag, Peter Jansen, Ben Heijmen

Department of Radiation Oncology, ErasmusMC, Rotterdam, The Netherlands
PlanUS2CT compared to planUS

<table>
<thead>
<tr>
<th></th>
<th>Patient 1</th>
<th>Patient 2</th>
<th>Patient 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTV coverage TRUS/CT</td>
<td>28%</td>
<td>6%</td>
<td>10%</td>
</tr>
<tr>
<td>Urethra max</td>
<td>13%</td>
<td>=</td>
<td>2%</td>
</tr>
<tr>
<td>Urethra volume</td>
<td>8%</td>
<td>=</td>
<td>82%</td>
</tr>
<tr>
<td>Rectum max</td>
<td>18%</td>
<td>12%</td>
<td>1%</td>
</tr>
<tr>
<td>TRUS Prostate volume</td>
<td>31 cc</td>
<td>36 cc</td>
<td>35 cc</td>
</tr>
<tr>
<td>CT Prostate volume</td>
<td>52 cc</td>
<td>32 cc</td>
<td>51 cc</td>
</tr>
</tbody>
</table>

Fig. 4. Summarized effect of changes (PlanUS2CT compared to PlanUS) in dose distribution due to posture changes on DVHs. In the planUS all dose constraints were met.
1. Conclusions - Positioning

One plan, One fraction
 Re-plan each time for multiple fractions
US should be in position during treatment
 minimize deformation change
Patient needs to be same position plan/tx
 cystoscopy (high vs low lithotomy)
Imaging of implant needles for real-time HDR-brachytherapy prostate treatment using biplane ultrasound transducers

Frank-André Siebert, a) Markus Hirt, and Peter Niehoff
Clinic of Radiotherapy, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel 24105, Germany

György Kovács
Interdisciplinary Brachytherapy Unit, University of Lübeck, Lübeck 23538, Germany

(Received 23 January 2009; revised 28 May 2009; accepted for publication 29 May 2009; published 1 July 2009)
37c water tank

D1 = 13 mm
D4 = 43 mm
D7 = 73 mm

BK-Medical US/Probe
Falcon 2101 / Type 8658
ProFocus 2202 / Type 8658
ProFocus 2202 / Type 8848

Varian Medical
Trocar point stainless steel needle

1. Different probe position
2. Integrated Optical Density
3. Users
2. Conclusions - Hardware/Software

Tip was more distal
This is always underestimated (0.8-3.1 mm)
Depending on the probe and frequency
Not distance dependent (test range 13-43 mm)

Image on sagittal better than transverse
Mean difference 2.6 vs 1.8 mm
Probe dependent (0.1-1.8 mm)
Not frequency depending within each probes tested
Integrated Optical Density (IOD) vs Trocar Tip

Different users use different echo characteristics for localization IOD depending on gain & lower IOD -> less error
lowest when z = 0
User interpretation differences (0.08-0.16 mm)
Static vs. dynamic
A novel method for accurate needle-tip identification in trans-rectal ultrasound-based high-dose-rate prostate brachytherapy

Dandan Zheng, Dorin A. Todor*

Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA
\[c = b - a + T \]
Probe Position

Template Position

Zheng, Brachytherapy 10: 455-73, 2011
3. Results/Conclusions

TRUS Method
- Error in water: 0.7-2.3 mm
- Error in phantom: 0.9-13.2 mm

Physical Measure Method
- Error in water: 0.6-0.8 mm
- Error in phantom: 0.3-0.9 mm

Best method?
Test needs to be done in phantom
(not just water)

include artifacts
Effect of using different U/S probe Standoff materials in image geometry for interventional procedures: the example of prostate

Stefanos Diamantopoulos, BS, Natasa Milickovic, PhD, Saeed Butt, BS, Zaira Katsiliieri, MSc, Vasiliki Kefala, MSc, Pawel Zogal, MSc, George Sakas, PhD, Dimos Baltas, PhD

1Department of Medical Physics & Engineering, Klinikum Offenbach GmbH, Offenbach am Main, Germany, 2Medcom GmbH, Darmstadt, Germany, 3Fraunhofer IGD (Cognitive computing and medical imaging), Darmstadt, Germany