MRI guided High Intensity Focused Ultrasound for tumor ablation in breast and liver

Chrit Moonen
Disclosures

- Research collaboration with Philips Medical Systems
- Research collaboration with Elekta
MRI guided High Intensity Focused Ultrasound

- MRI with HIFU
- anatomy and temperature mapping
- thermo-therapy
- position and power control
- PC
- TRANSDUCER

MRI guided High Intensity Focused Ultrasound
MRI temperature mapping based on the Proton Resonance Frequency of water

\[\frac{d\sigma}{dT} = \beta = 0.01 \text{ ppm/}^\circ\text{C} \pm 5\% \]

\[\Delta T = -\Delta \varphi / (\beta \cdot \gamma \cdot B_0 \cdot T_E) \]

Linear / independant of tissue type (Peters, Henkelman et al, 1996)

RF-spoiled gradient echo

Phase 1

Phase 2

(relative temperature map)

20 mm

zoom x 4

zoom x 4

zoom x 4
Rapid temperature mapping in kidney and liver

Example 1

Example 2

anatomy motion correction in pulse sequence only Sequence + Post-processing motion correction

10°C 0°C
Correction of thermal maps: multi-baseline approach

Pretreatment step

During intervention

\[\gamma = \frac{\sum_{x,y} (I_{x,y} - \bar{I})(I'_{x,y} - \bar{I}')}{\sqrt{\sum_{x,y} (I_{x,y} - \bar{I})^2 \sum_{x,y} (I'_{x,y} - \bar{I}')^2}} \]
Precision of MRI temperature mapping in breast tumor

Gradient Echo Images

Temperature standard deviation maps
Dedicated breast MR-HIFU system

“Conventional” approach

Dedicated system with lateral sonication

transducer top view
Dedicated breast platform
Sonalleve Breast MR-HIFU

Table top without covers

Water box with transducer and motors

Close-up of breast cup, single-element RF coil, and transducer
Breast tumor 1: MRI planning
Results: MR-HIFU Breast tumor patient 1
Phase 1 Clinical trial (treat and resect)
Breast tumor patient 3
Patient 3: Pathology
Magnetic Resonance guided HIFU of liver

Challenges:
1. **motion**:
 - Artifacts in MRI thermometry
 - Target tracking/gated HIFU
2. **Presence of ribs**
 - Block propagation of HIFU
 - Burn risk in and around ribs
3. **Highly perfused organs**
 - Cooling due to flow/perfusion
 - High HIFU energy deposition
 - Burn risk in near and far field
Intercostal HIFU: Selecting HIFU transducer elements based on beampath

Determine shadowed fraction of area A_s

If $A_s >$ threshold:
Switch Element OFF

$$P_{elem} \leftarrow P_{elem} \frac{n_{total}}{n_{active}}$$
Intercostal HIFU: Selecting HIFU transducer elements based on beampath

Manual segmentation

projection

Element deactivated if $S_{\text{covered}} > 50\%$
Results

HIFU: Philips Sonalleve platform, 120 Watts, 30 sec

MRI thermometry: 2 orthogonal slices, TE/TR=22/200ms, Vox size =1.5x2.5x6
Power calibration animal 4

dose contours

Gd-enhanced contrast

shot pattern
MR-HIFU
Take home messages

- HIFU is noninvasive, does not use ionizing radiation
- MRI can be used for target definition and for temperature mapping
- Real-time MR imaging and feedback coupling are challenging but feasible
- At Utrecht, Phase I of MR-HIFU of breast tumors is ongoing: Phase 1 ablation of liver tumors will probably start in Q1 of 2014

- MR-HIFU is a relatively new approach
- Conceptual similarities with radiotherapy with the following differences:
 No apparent cumulative dose issues for nearby healthy tissue (so long as thermal dose is controlled): procedure can be repeated
 Rapid effect (seconds for coagulative necrosis, up to 1 day for apoptosis)

Real-time imaging during the procedure is a central element of MR-HIFU: Similarities with new developments in Image Guided RT
Radiotherapy

- Standard-of-Care for many types of cancer
- High-Precision Treatment (Gamma-knife, linear accelerator, proton beam)
- Pre-planning is image guided
 - Definition of Gross Tumor Volume (GTV)
 - Definition of Clinical Target Volume (CTV)
 - Identification of Organ At Risk (OAR)
- Until now, treatment itself is usually not (real-time) image guided
- Therefore, it is difficult to treat mobile organs with RT
- University Medical Center Utrecht moves towards real-time MR image guidance
Vision behind the Center for Image Guided Oncological Interventions

- **MRI guidance of RadioTherapy and MR guided HIFU will set the next stage in high-precision tumor therapy**
- **Synergy in development** (motion descriptors, target tracking)
- **MR-LINAC will be the next standard-of-care in RadioTherapy**: Combination with MR-HIFU is promising
- **MR-HIFU offers many complementary features and may be added to the Surgical, RT and Chemo therapies**
- **MR-HIFU may lead to Image Guided ChemoTherapy**
Centre for Image Guided Oncological Interventions (CIGOI)

MR-LINAC
MRI guided brachytherapy
MR-HIFU

HDR robotic brachytherapy

HIFU

MRI linac
MRI with ring gantry (UMCU-Philips-Elekta)
• With MRI we see the GTV and we can follow/track tumours
• The GTV is hard to track with present day radiotherapy
• Tumour infiltrations are relatively well visualized
• MRI can be used to better track the GTV and spare OAR

Conclusion UMCU: MRI guided cancer treatment, seeing what you treat
Present indications Cancer Therapy

<table>
<thead>
<tr>
<th></th>
<th>distant</th>
<th>CTV</th>
<th>GTV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemo</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>RT</td>
<td>-</td>
<td>++</td>
<td>-/+</td>
</tr>
<tr>
<td>Surgery</td>
<td>--</td>
<td>-/+</td>
<td>+</td>
</tr>
</tbody>
</table>

![Diagram showing CTV and GTV relationships](image-url)
Development MR-HIFU and MR-LINAC

<table>
<thead>
<tr>
<th></th>
<th>distant</th>
<th>CTV</th>
<th>GTV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemo</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>RT</td>
<td>-</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Surgery</td>
<td>--</td>
<td>-/+</td>
<td>+</td>
</tr>
<tr>
<td>HIFU</td>
<td>-</td>
<td>+</td>
<td>++</td>
</tr>
</tbody>
</table>
Imaging Division, UMCU; Jan Lagendijk, Marco van Vulpen, Bas Raaijmakers, Baudouin Denis de Senneville, Mario Ries, Clemens Bos, Anna Yudina, Wilbert Bartels, Gert Storm, Maurice van den Bosch, Willem Mali et al

Philips Healthcare
Charles Mougenot, Max Köhler, Sham Sokka and the Helsinki team

Financial support
European Union (Project SonoDrugs), CTMM project s VOLTA and HIFU-CHEM, ERC project Sound Pharma