MRI guided High Intensity Focused Ultrasound for tumor ablation in breast and liver

Universitair Medisch Centrum Utrecht

Chrit Moonen

- Research collaboration with Philips Medical Systems
- Research collaboration with Elekta

MRI guided High Intensity Focused Ultrasound

thermo-therapy

anatomy and temperature mapping

TRANSDUCER

MRI temperature mapping based on the Proton Resonance Frequency of water

$d\sigma / dT = \beta = 0.01 \text{ ppm/}{}^{\circ}C \pm 5\% \qquad \Delta T = -\Delta \phi / (\beta \cdot \gamma \cdot B_{o} \cdot T_{E})$

Linear / independant of tissue type (Peters, Henkelman et al, 1996)

RF-spoiled gradient echo

Phase 2 – Phase 1

Phase 1

relative temperature map

zoom x 4

20 mm

Rapid temperature mapping in kidney and liver

Utrecht

Correction of thermal maps : multi-baseline approach

[ICIP 2004]

Precision of MRI temperature mapping in breast tumor

Temperature standard deviation maps

Dedicated breast MR-HIFU system

"Conventional" approach

Dedicated system with lateral sonication

transducer top view

Dedicated breast platform Sonalleve Breast MR-HIFU

Table top without covers

Water box with transducer and motors

Close-up of breast cup, singleelement RF coil, and transducer

Breast tumor 1: MRI planning

Results: MR-HIFU Breast tumor patient 1 Phase 1 Clinical trial (treat and resect)

Breast tumor patient 3

Patient 3: Pathology

Magnetic Resonance guided HIFU of liver

Challenges

- 1. motion:
 - Artifacts in MRI thermometry
 - Target tracking/gated HIFU
- 2. Presence of ribs
 - Block propagation of HIFU
 - Burn risk in and around ribs
- 3. Highly perfused organs
 - Cooling due to flow/perfusion
 - High HIFU energy deposition
 - Burn risk in near and far field

Intercostal HIFU: Selecting HIFU transducer elements based on beampath

Intercostal HIFU: Selecting HIFU transducer elements based on beampath

Manual segmentation

Element deactivated if S_{covered} > 50%

Results

HIFU : Philips Sonalleve platform, 120 Watts, 30 sec

MRI thermometry : 2 orthogonal slices TE/TR=22/200ms Vox size =1.5x2.5x6

Center

Power calibration animal 4

Gd-enhanced contrast

Monitor Stack A Treatment Cell Cluster 2

MR-HIFU Take home messages

- HIFU is noninvasive, does not use ionizing radiation
- MRI can be used for target definition and for temperature mapping
- Real-time MR imaging and feedback coupling are challenging but feasible
- At Utrecht, Phase I of MR-HIFU of breast tumors is ongoing : Phase 1 ablation of liver tumors will probably start in Q1 of 2014
- MR-HIFU is a relatively new approach
- Conceptual similarities with radiotherapy with the following differences: No apparent cumulative dose issues for nearby healthy tissue (so long as thermal dose is controlled): procedure can be repeated Rapid effect (seconds for coagulative necrosis, up to 1 day for apoptosis)

Real-time imaging during the procedure is a central element of MR-HIFU: Similarities with new developments in Image Guided RT

Radiotherapy

- Standard-of-Care for many types of cancer
- High-Precision Treatment (Gamma-knife, linear accelerator, proton beam)
- Pre-planning is image guided
 - Definition of Gross Tumor Volume (GTV)
 - Definition of Clinical Target Volume (CTV)
 - Identification of Organ At Risk (OAR)
- Until now, treatment itself is usually not (real-time) image guided
- Therefore, it is difficult to treat mobile organs with RT
- University Medical Center Utrecht moves towards real-time MR image guidance

Vision behind the Center for Image Guided Oncological Interventions

- MRI guidance of RadioTherapy and MR guided HIFU will set the next stage in high-precision tumor therapy
- Synergy in development (motion descriptors, target tracking)
- MR-LINAC will be the next standard-of-care in RadioTherapy: Combination with MR-HIFU is promising
- MR-HIFU offers many complementary features and may be added to the Surgical, RT and Chemo therapies
- MR-HIFU may lead to Image Guided ChemoTherapy

Centre for Image Guided Oncological Interventions (CIGOI)

MR-LINAC MRI guided brachytherapy MR-HIFU

HDR robotic brachytherapy

MRI linac

MRI with ring gantry (UMCU-Philips-Elekta)

- With MRI we see the GTV and we can follow/track tumours
- The GTV is hard to track with present day radiotherapy
- Tumour infiltrations are relatively well visualized
- MRI can be used to better track the GTV and spare OAR

Conclusion UMCU: MRI guided cancer treatment, seeing what you treat

Present indications Cancer Therapy

	distant	CTV	GTV
Chemo	+	+	-
RT	-	++	-/+
Surgery		-/+	+

Development MR-HIFU and MR-LINAC

MR-HIFU

Imaging Division, UMCU; Jan Lagendijk, Marco van Vulpen, Bas Raaijmakers, Baudouin Denis de Senneville, Mario Ries, Clemens Bos, Anna Yudina, Wilbert Bartels, Gert Storm, Maurice van den Bosch, Willem Mali et al

Philips Healthcare Charles Mougenot, Max Köhler, Sham Sokka and the Helsinki team

Financial support European Union (Project SonoDrugs), CTMM project s VOLTA and HIFU-CHEM, ERC project Sound Pharma

