

Mark Carol, M.D. Chief Development Officer SonaCare Medical AAPM 2013

Sonablate

Honestly, if there was a virtual prostate exam, don't you think I'd want to be the first to know?"

Multi-Functional HIFU Probe "See, Treat, and Track"

Treat

Track

HIFU Discrete Delivery

- Most HIFU systems deliver a series of discrete ablations or "shots"
- Each shot is delivered in 3 seconds
- 3 6 second pause after shot allows for imaging and tissue cooling
- Staggered pattern of shot dispersion allows cooling of tissue
- Probe cooled with chilled water

HIFU Continuous Delivery

- It is possible to deliver heat continuously, moving the focal point over volume of tissue to be ablated
- Tissue back to surface of the probe is destroyed eliminating need for probe cooling and pauses for cooling
- Elimination of "active" cooling results in a more efficient treatment delivery (3 – 6x)

Sonatherm Integrated Imaging/Therapy

Sonatherm Laparoscopic Probe Tip

Therapy Crystals

- Three (3) distinct operating crystals (one imaging and two therapy)
- Robotic scanning of transducers for volumetric imaging & ablation

Sonatherm Characteristics

Focal Length: Lesion Depth: Lesion L/W: Imaging f: Therapy f: Max Output: Lesion Shape: Treatment Times: 35 mm 30 mm (maximum) 30 x 7 mm (maximum) **6.5 MHz** 4 MHz 35 watts Sector 10 min for 12 cc lesion (2 cm x 2 cm x 3 cm) 30 min for 35 cc lesion (Sonablate = 180 min)

Sonatherm Ex-Vivo

Role of US HIFU Ablation

- Image Fusion for localization and targeting
- Treatment Planning
- Treatment Delivery
- Temperature Monitoring
- Tissue Typing

Road Runner Localization

IMAGE FUSION SmartTarget

University College London (UCL), United Kingdom

UCL Centre for Medical Image Computing UCL Department of Medical Physics & Bioengineering UCL Division of Surgery & Interventional Science

IMAGE FUSION SmartTarget

- Automatic, deformable image registration/fusion
 - Compensates for shape changes due to <u>ultrasound probe pressure</u> and <u>gland swelling</u>
- Accuracy
 - Error of 2.4mm
 - >90% hit rate for a 0.5cc spherical tumour

*Hu et al. Medical Image Analysis (2012)

• Simple workflow

> Minimal user interaction during a surgical procedure

- Versatility
 - Configurable for use with biopsy and all minimally-invasive therapies including HIFU

*Patent Pending

Sonablate[®] New Software Development

Courtesy of Professor Mark Emberton, M.D., University College London

MEDICAL

Export image volume to SmartTarget

Mark positions on prostate capsule

Register MRI to US with SmartTarget

Role of US Imaging HIFU Ablation

- Image Fusion for localization and targeting
- Treatment Planning
- Treatment Delivery
- Temperature Monitoring
- Tissue Typing

Import structures into SonaPlan

View of target on planning screen

Outline with desired margin

Complete treatment plan

US-based Planning

Role of US HIFU Ablation

- Image Fusion for localization and targeting
- Treatment Planning
- Treatment Delivery
- Temperature Monitoring
- Tissue Typing

Treatment

Image update during HIFU

Treatment

Image update during HIFU

Treatment

Image update during HIFU

Treatment

Ablation Complete

Role of US HIFU Ablation

- Image Fusion for localization and targeting
- Treatment Planning
- Treatment Delivery
- Temperature Monitoring
- Tissue Typing

MR thermometry for continuous temperature feedback

INCREASED ATTENUATION DUE TO TISSUE TEMPERATURE ELEVATION

- Spectral analysis on RF backscattered (pulse-echo) <u>ultrasound</u> signals acquired before and immediately following HIFU exposure
- Analysis generates energy spectra of signals
- Difference used as estimator for changes in tissue temperature

(b)

Clinical Example of Second "Pass" with HIFU

Replacing "Greens" with "Yellow/Orange"

First Pass

Second Pass

Courtesy – Dr. G. M. Suarez, MD

Role of US HIFU Ablation

- Treatment Planning
- Image Fusion for localization and targeting
- Treatment Delivery
- Temperature Monitoring
- Tissue Typing

"Well, yes, we could fix it in Photoshop, but your arm would still be broken."

Use of Ultrasound Pulse-Echo (RF) data for Quantitative Features Analysis

Anterior Tumor: 3-D Image

(base view)

Use of Ultrasound for Anatomic Feature Analysis

USgFUS

Complementary to Existing Approaches

"Judging by your X-rays, I'd say you've been exposed to too much radiation."

"Hi, I'll be performing your surgery tomorrow."

Final Thoughts Cost of Health Care

