High-frequency Ultrasound Detection of Tumor Vascular Hypoxia as a Targeting Modality for Focused Ultrasound Ablation to Complement Chemoradiation

¹Robert J. Griffin, ¹Nathan A. Koonce, ²Xin Chen, ³David Lee, ⁴James Raleigh

¹University of Arkansas for Medical Sciences, Department of Radiation Oncology ²Stanford University, Department of Radiation Oncology ³Bio-Organic & Natural Products Chemistry, McLean Hospital, Harvard Medical School, Belmont MA. ⁴Radiation Oncology, UNC School of Medicine, Chapel Hill, NC

Background Fundamental Radiation Biology: Hypoxia

Kirkpatrick JP, et al. Intl. J. Rad. Oncol. Biol. Phys. 59:822, 2004

Palcic et. al, Radiation Research 1984

Horsman et. al, Nature Reviews 2012

Meta-analysis showing a forest plot of the relationship between hypoxia imaging and the outcome to radiation therapy

Study 1	Tumour	Tracer	Events/total No hypoxia Hypoxia		Odds ratio and 95% Cl			Odds ratio (95% CI)
Loncaster (2002)97	Cervix	DCE MRI	3/25	9/25		3		
Mayr (2010) ³⁶	Cervix	DCE MRI	0/16	17/82				
Andersen (2012) ⁹⁹ (Cervix	DCE MRI	1/41	8/40	- 0			
DCE MRI all			4/82	34/147	- <	-		0.17 (0.06-0.52)
Hermans (1999) ⁸⁷	HNSCC	CTperf	9/21	10/20	-			
Bisdas (2009) ⁸⁸	HNSCC	CTperf	2/11	4/10	-	0		
Truong (2011) ⁸⁹	HNSCC	CTperf	0/6	2/6	- 0			
CT perfusion all			11/38	16/36	-		-	0.52 (0.19-1.42)
Urtasun (1996) ¹⁰²	HNSCC	IAZA	3/10	3/4				
Dehdashti (2003) ⁷⁰ I	Lung	CuATSM	0/8	6/6	-			
Lehtiö (2004)52	HNSCC	FETNIM	4/9	5/8	-			
Rajendran (2006) ⁵³	HNSCC	FMISO	10/37	18/36				
Rischin (2006)28	HNSCC	FMISO	1/10	8/13	-			
Thornwarth (2006)54	HNSCC	FMISO	1/6	4/6				
Li (2006) ¹⁰⁴	Lung	To-HL91	8/16	12/16	-			
Eschmann (2007)55	HNSCC	FMISO	2/4	4/8	-			
Dehdashti (2008) ⁷¹	Cervix	CUATSM	9/22	6/16			0	
Dietz (2008)72	Rectal	CUATSM	1/9	4/8		-		
Chamly (2008)58	Sarcoma	FAZA	3/9	7/8	-			
Spence (2008)57 (CNS	FMISO	9/11	11/11				
Dirix (2009)58	HNSCC	FMISO	2/6	5/6	S			
.ee (2009) ⁵⁹	HNSCC	FMISO	0/7	1/11	C4			-
LI (2010) ⁶⁰	Lung	FETNIM	8/13	12/13				
Schuetz (2010)47 (Cervix	FAZA	0/10	2/5	24			
Kikuchi (2011)61	HNSCC	FMISO	3/10	5/8	5 	0		
Minagawa (2011) ⁷³	HNSCC	CUATSM	0/5	6/10	-			
Mortensen (2012)62	HNSCC	FAZA	1/17	7/25		<u>i</u>		
/ue (2012) ⁸³	Oesophagus	FETNIM	1/14	11/14	-	1		
Zips (2012)64	HNSCC	FMISO	3/13	5/12	-			
PET/SPECT all			69/244	142/244	<	>		0.25 (0.16-0.39)
All studies			84/364	192/427	-			0.27 (0.18-0.39)

Horsman, M. R. et al. (2012) Nat. Rev. Clin. Oncol.

REVIEWS ONCOLOGY

Initial approach to reduce tumor hypoxia using ultrasound ablation to complement radiotherapy: Three basic steps of PET/MRI-guided FUS hypoxictissue ablation.

PET images of 4T1 and SCK mammary carcinomas, respectively. Attempt to target 'most hypoxic' regions with FUS.

Registration of MRI T2-weighted and ¹⁸Fmiso PET images of three transverse slices of a 4T1 tumor. The hypoxic areas characterized by contours of tumor/muscle (T/M) ratio >1.2. The water bolus used is shown in the MRI T2-weighted images but not in the PET images.

MRgFUS ablation of the hypoxic region in rear-limb tumor implant:

Advantages: reduced ablation times for large tumors, improved radiation outcomes

Disadvantages: Difficult co-registrations, tedious set-up and targetingare we really getting what we want?

IS THERE ANOTHER WAY TO FIND AND TARGET 'IMPORTANT' HYPOXIA?

Background Evidence of Hypoxemic Hypoxia

Normal tissue vessels 72±13 mmHg Tumor peripheral vessels 26±5 mmHg Tumor central vessels 12±3 mmHg а pO2#11

Perivascular oxygen tensions

Dewhirst et. al Radiation Research, 1992

Background: Imaging Vascular Hypoxia

Provided by Andrew Fontanella, Dewhirst Group

Hypoxia protects endothelial cells from radiation induced cell death

Vasculature key component of high dose radiation response.... Can we specifically detect and eliminate hypoxemic vessels?

Tumor Response to Radiotherapy Regulated by Endothelial Cell Apoptosis

Monica Garcia-Barros,¹ Francois Paris,¹ Carlos Cordon-Cardo,² David Lyden,³ Shahin Rafii,⁵ Adriana Haimovitz-Friedman,⁴ Zvi Fuks,⁴* Richard Kolesnick¹*†

Evidence of indirect cell death caused by radiation induced vascular damage

<u>I Detect hypoxia via pimonidazole adducts on the surface of hypoxic</u> <u>endothelium using contrast enhanced molecular ultrasound</u>

MB_{pimonidazole} in 4T1 mammary carcinoma

Hyperthermia as a tool to understand changes in vascular hypoxia following therapy

Mild hyperthermia and 95% oxygen breathing combine to reduce vascular hypoxia: Link to improved radiation response observed in numerous studies.

A concept of selective drug/nanomedicine therapeutic targeting of vascular hypoxia

Inject pimonidazole i.p., allow addu ct formation in hypoxic vessels

Infuse pimonidazole-targeted drug delivery vehicles to selectively target hypoxic vasculature

Contrast-enhanced US analysis of vessel hypoxia in transgenic breast cancer model MMTV-Wnt-1

Colocalization analysis of hypoxic vessel presence: transgenic breast cancer also displays traits

Further importance of destroying/targeting the hypoxic, perivascular niche Hypoxia linked to cancer stem cells

Proliferation Self-renewal **Ivpoxia** Non-stem cancer cells Tumourigenicity

White: CD31+ endothelial cells, Red: ALDH stem cell marker, Green: PIMO, hypoxia in transgenic murine breast tumor line MMTV-Wnt-1

Conclusions

- Development of a novel method for detecting hypoxemic vessels with contrast enhanced US may lead to improved methods for specifically targeting/removing hypoxic tissue
- Resistance of tumor vasculature/stroma a major factor in overall tumor control with chemoradiation
- Potential new target for drug/nanomedicine delivery to areas associated with therapeutic resistance
- An ultrasound-based imaging and treatment approach against cancer initiating cells?

Acknowledgements

- Eduardo Moros, PhD, Moffitt Cancer Institute
- Joseph Levy
- Azemat Jamshidi-Parsian

<u>Funding</u> Focused Ultrasound Surgery Foundation NIH CA-44114

Over 100 Oral Presentations J. Eugene Robinson Lecture Exhibitors, Poster Presentations Refresher Courses NIH-supported New Investigator Travel Awards

William Dewey Award **3 Keynote Speakers**

Photos supplied by 'Meet Minneapolis'