Ultrasound-mediated drug delivery for cardiovascular disease

Jonathan T. Sutton¹, Kirthi Radhakrishnan¹, Jason L. Raymond¹, Kenneth J. Bader², Guillaume Bouchoux², Kevin J. Haworth¹,², Gail Pyne-Geithman³, Christy K. Holland¹,²

¹University of Cincinnati; Biomedical Engineering Program, College of Engineering and Applied Science; Cincinnati, OH USA
²University of Cincinnati; Internal Medicine, Division of Cardiovascular Diseases; Cincinnati, OH USA
³University of Cincinnati, College of Medicine, Department of Neurosurgery; Cincinnati, OH USA

Acknowledgements:

• NIH RO1 HL059586
• NIH/NINDS R01 NS047603
• NIH RO1 HL74002
CVD Drug Delivery: Strategies

Conventional Drug Delivery Strategy:
Perfuse entire vasculature with drug
 - tissue specificity
 - systemic effects

Ultrasound-mediated drug delivery:
1. **Target** drug/bubbles to pathologic tissue
 - Antibody conjugation
 - Molecular image-guidance
2. **Trigger** release & penetration
 - Permeabilize barriers
 - Drive drug penetration
3. **Induce** bioeffects
 - Stabilize plaques
 - Inhibit cell proliferation
 - Expedite clot lysis

Sonothrombolysis

- Ischemic Stroke
- Cerebral Hemorrhage
- Myocardial Infarction
- Deep Vein Thrombosis
Acute Ischemic Stroke: sudden cerebrovascular stenosis
- Treatment: I.V. recombinant tissue-type plasminogen activator (rt-PA)
 - 20 – 40% reperfusion, 4-7% hemorrhage. treatment window

Progress: sonothrombolysis to expedite clot lysis

Roger et al., Circulation. 2011.
Sonothrombolysis: Drug Penetration = Lysis

Enzyme penetration: rt-PA

Datta et al. UMB. 2008
Implement an accurate transcranial propagation numerical model. Validate experimentally.

- 1 cycle, 120 kHz sinusoidal excitation
- Simulations compared with hydrophone measurements
- Degassed human skulls
- 15 – 33% pressure reduction (rel. FF)
- Shift in peak pressure position < 2.5 mm
- Homogenous acoustic pressure in MCA

Bouchoux et al. PMB. 2012.
Research Question: Does clot retraction affect extent of sonothrombolysis?

Sonothrombolysis: Ex vivo perfusion model

INFUSION PUMP
PRESSURE TRANSDUCER
FLOW CLAMP
EFFLUENT
120-kHz Therapy Transducer

AFTERLOAD RESERVOIR
PRELOAD RESERVOIR
MEMBRANE OXYGENATOR
PULSATILE PUMP
2.25-MHz PCD
Acoustic Absorber
Sonothrombolysis: Bioeffects

Ex Vivo Thrombosis System

- Plasma Alone
- rt-PA
- rt-PA, Definity + US

US: 120 kHz, 0.48 MPa_{PK-PK}, CW

Cardiovascular Drug Delivery:
US Contrast Agents
Drug Targeting & Image-Guidance: ELIP

Proposed schematic of an Echogenic Liposome (ELIP)

Raymond et al. UMB, (Submitted).
Drug Targeting & Image-Guidance: ELIP Targeting to Smooth Muscle

Neuroprotection

Atherosclerosis

Peripheral vascular disease

Cardiovascular Drug Delivery: Therapeutics
Sonothrombolysis: Ex vivo perfusion model
Bioeffects: Drug penetration

Bevacizumab (Avastin)

Rx: Anti-angiogenesis

Size: 149 kDa antibody

Form: BEV-ELIP

BEV-ELIP Sham

Control

BEV-ELIP + US

US: 1 MHz, 0.58 MPa_{PK-PK}, CW
Bioeffects: Bioactive gas delivery

Nitric Oxide (NO)
- **Size:** Soluble gas, 30 Da
- **Form:** NO Liposomes
- **Mechanism:**
 \[\text{NO} + \text{SM} = \text{Vasodilation} + \text{Permeability} \]

Image of a device labeled with 'UCP' and a needle labeled '22G Blunt Hypo. Needle.'
Bioeffects:
Nitric Oxide

Buffer
Nitric Oxide
Liposomes

Arterial Tension (%)

Time after Treatment (s)
Bioeffects: Nitric Oxide

Buffer
Nitric Oxide
Liposomes
Nitric Oxide
Liposomes + US

Arterial Tension (%)

Time after Treatment (s)

US: 1 MHz, 0.18 MPa, 30 cycles, 1% DC
Bioeffects: Nitric Oxide

US: 1 MHz, 0.18 MPa, 30 cycles, 1% DC

Arterial Tension (%)

Time after Treatment (s)
Goal of UC IgUTL:
Investigate possible role of ultrasound to treat cardiovascular disease
- circulatory stability of drug carriers
- ultrasound image guidance, molecular imaging
- tissue targeting
- promote bioeffects, understand mechanism

Current Work:
- Developing/assessing novel drug carrier & US contrast agent (ELIP)
- sonothrombolysis
- drug penetration into tissue & resulting bioeffect
 • fibrinolytic enzymes, bevacizumab, nitric oxide
Thank You

Questions, Comments?