Modeling of MR-guided HIFU for Breast and Brain Therapy

Douglas A. Christensen, Allison Payne, Nick Todd, Scott Almquist, Alexis Farrer and Dennis L. Parker

> University of Utah Salt Lake City, Utah

Overview

- High-Intensity Focused Ultrasound (HIFU) Surgery
 - Critical needs: locating the beam; full 3D temperature images; accurate beam modeling
- Beam Modeling with Hybrid Angular Spectrum (HAS)
 Method
- Application to Brain and Breast
 - Phase aberration correction
 - Incorporating absorption and scattering

Critical Need 1: Locating Beam

Use Acoustic Radiation Force Imaging (ARFI) with MRI

steered 5,5,5 mm in phantom: at geometric focus in phantom: **ARFI** temperature **ARFI** temperature coronal sagittal

Critical Need 2: Measure Temperature throughout Full 3D Volume

Use <u>Model Predictive</u>
<u>Filtering</u> with an acoustic and thermal model

Ultrasound Parameters:

- 256-element transducer
- 30-s single point sonication
- 48 W

MR Parameters:

- 36 slices
- 8x undersampled
- 1.25 x 1.25 x 3.0 mm
- 1.8 sec / frame

- TR / TE = 25 / 11 ms
- EPI 9
- 240 x 158 x 108 mm

Experimental Results: 3D Temperature Measurements

Critical Need 3: Accurate Ultrasound Beam Simulations

Bone metastases:

- Needed for:
 - Treatment planning
 - Safety assurance
 - Transducer design
 - Phase aberration correction (skull and breast)

InSightec Ltd, Israel

3D Ultrasound Beam Modeling Methods

- Homogeneous Media:
 - Rayleigh-Sommerfeld integral
 - Classic, accurate
- Inhomogeneous Media:
 - Finite-Difference Time-Domain (FDTD)
 - Transient and steady-state behavior, fine grid, slower
 - Hybrid Angular Spectrum (HAS)
 - Steady-state, linear, fast
 - Leapfrogs between space and spatial-frequency domains

HAS Method

- Comparable to FDTD results within 2.8% (3D breast model).*
- Two orders of magnitude faster:

Example simulation:

transducer: 1.5 MHz

beam direction

3D model: 141 x 141 x 161

3D pressure pattern:

*Vyas, U. and Christensen, D., IEEE Trans UFFC, **59** (6), 1093-1100 (2012)

Application of Beam Modeling to Transcranial Treatments

InSightec 650-kHz ExAblateNeuro

Variable skull thickness in beam path leads to phase aberration

Phase Aberration Correction through Skull

512 x 348 x 488 model 0.6 x 0.43 x 0.43-mm resolution

With parallelization on GPU, total phase correction took 183 seconds

Pressure Patterns through Skull

Max pressure at focus- 2.4x10⁵ Pa normalized to 8 W total

Max pressure at focus- 6.6x10⁵ Pa

Power Deposition Q Patterns through Skull

Max Q at focus- 2500 W/m 3 Ratio Q_{focus}/Q_{skull} - 0.51

phase correction

Max Q at focus- 18,000 W/m³
Ratio Q_{focus}/Q_{skull}- 2.4

Experimental Results for Phase Correction

- Experimental setup:
 - 3D-printed plastic skull model
 - Random variations in thickness
 - Phase shifts up to 2π

Experimental Setup to Test for Phase Correction

- MRI compatible HIFU device with 256-element phased-array transducer (Image Guided Therapy, Imasonic)
- Plastic pseudoskull on bottom of agar phantom
- Temperature measurements with MRTI (prf method)

Temperature Results with/without Phase Correction

Application to Univ. of Utah Breast HIFU System

Allison Payne, et al., Med Phys 2012; 39(3):1552-1560

Univ. of Utah Breast-Specific Treatment Cylinder

integrated 11-channel RF coil (Univ. of Utah)*

^{*} Emilee Minalga, et al., Magn Reson Med 2013 Jan;69(1):295-302

Univ. of Utah Breast-Specific HIFU System

Siemens Trio 3T-MRI

ultrasound
powerdrivers

Phase Aberration Correction in Breast

- Develop full 3D tissue model
 - Segment tissues with multiple contrasts
 - Estimate acoustic properties for each tissue type
 - Model beam propagation using HAS
 - Adjust transducer element phases

Alexis Farrer, ISTU 2013, poster 28

Example of Phase Correction in Breast

Pressure patterns

Alexis Farrer, ISTU 2013, poster 28

Adding Scattering to HAS Algorithms

Provides more accurate modeling of attenuation

Models:

- A: Implicit $\alpha_{abs} < \alpha_{total}$
 - Pressure drop due to total attenuation coefficient
 - Power deposition (heating) due only to absorption coefficient
- B: Explicit (within voxel)
 - Explicit random scatter fraction within each voxel
 - Scattered wave modeled
- C: Explicit (variations larger than voxel)
 - Variations in speed of sound, attenuation, density
 - Tissue-specific with normally distributed variations

A. Implicit: Separate Attenuation into Two Components

<u>Typical</u>: attenuation = absorption

$$p_2 = p_1 e^{-\partial_{total} Dz}$$

<u>Improved</u>: attenuation = absorption + scattering

$$p_2 = p_1 e^{-a_{total}Dz} = p_1 e^{-(a_{abs} + a_{scatt})Dz}$$
heat scattered power

A. Implicit: Transcranial Power Deposition Patterns

No scattering: absorption = total attenuation

skull att = 2.1 Np/cm; brain att = 0.06 Np/cm frequency = 1.0 MHz

peak power brain/peak power skull = 0.29

*Pinton, G. et al., Med Phys **39**, 299 (2012)

With scattering: absorption < total attenuation

skull abs = 50% att*; brain abs = 80% att skull sca = 50% att*; brain sca = 20% att

peak power brain/peak power skull = 0.47

B. Explicit: Small Scatterers within Each Voxel

Scattered beam pressure pattern alone in breast (volume with scattering – volume without scattering)

$$\alpha_{\text{scatter}}$$
 = 40% α_{total}

C. Explicit: Larger Property Variation across Voxels

Scattered beam pressure pattern alone in breast (volume with scattering – volume without scattering)

standard deviation = 2%, correlation length = 6 mm

C. Explicit – Effect of Scattering on Focused Spot

- Peak pressure at focus = 85% of no-scattering value
- Focused spot size blurred

Future Plans

- New NIH grant: Improvements in <u>breast</u> system (coils, cylinder)
 - IDE approval
 - Heading toward clinical trials
- Continuing NIH grant: Rapid 3D temperature mapping in <u>brain</u>
 - Model Predictive Filtering
 - Estimation of tissue parameters for treatment planning and assessment
- Collaborations (FUSF): Validation of simulations
 - Mapping of CT Hounsfield units to acoustic parameters
 - Continued ARFI development

<u>Acknowledgments</u>

The UCAIR group

Funding from:

The FUS Foundation, The Margolis Foundation, Siemens Healthcare AG, NIH R01s: CA87785, CA134599, EB013433

Thank you - Any questions?

<u>High-Intensity Focused Ultrasound (HIFU) Surgery</u> Critical needs:

- Treatment planning
 - Beam localization

3D MR-ARFI; 3D MRTI

- Beam modeling
 - Phase and attenuation correction
 - Beam profile/SAR prediction: Optimize delivery of energy to treatment position
 - Minimize heating of adjacent and near-field tissues
- Treatment Control
 - 3D Temperature monitoring 3D MRTI (MR Temperature Imaging)
 - Tissue damage assessment (Todd et al., ISTU 2013 Tuesday)

3D MRI temperature measurements

<u>High-Intensity Focused Ultrasound (HIFU) Surgery</u> Critical needs:

- Treatment planning
 - Beam localization

3D MR-ARFI; 3D MRTI

- Beam modeling
 - Phase and attenuation correction
 - Beam profile/SAR prediction: Optimize delivery of energy to treatment position
 - Minimize heating of adjacent and near-field tissues
- Treatment Control
 - 3D Temperature monitoring
 3D MRTI (MR Temperature Imaging)
 - Tissue damage assessment (Todd et al., ISTU 2013 Tuesday)

<u>High-Intensity Focused Ultrasound (HIFU) Surgery</u> <u>Critical needs:</u>

- Treatment planning
 - Beam localization
 - Beam modeling

3D MR-ARFI

Hybrid Angular Spectrum (HAS)

- Phase and attenuation correction
- Beam profile/SAR prediction: Optimize delivery of energy to treatment position
- Minimize heating of adjacent and near-field tissues
- Treatment Control
 - 3D Temperature monitoring
 - Tissue damage assessment

3D Vibe with Contrast

- 3D MRI covering full volume
- 1-mm isotropic resolution, ZFI to 0.5 mm spacing

- Develop fully 3D tissue model
 - Multiple image contrasts
 - Zero-fill interpolate to 0.5mm isotropic spacing

Alexis Farrer, ISTU 2013, poster 28

Develop fully 3D tissue model

Segment tissues

Slice 160/240 Vibe pt Dixon water 3 pt Dixon fat

Alexis Farrer, ISTU 2013, poster 28

Estimate acoustic properties
 for each tissue type

water

fat

5. F. Duck. **Physical Properties of Tissue.** Academic, New York, 1990:

	Density (kg/m³)	Speed of Sound (m/s)	Attenuation (Np/cm*MHz)
Water	1000	1500	0
Skin	1100	1537	0.28
Breast fat	928	1436	007
Fibroglandular tissue	1058	1514	0.09
Tumors/Fibroa denoma	1041	1584	0.081
Nipple cover	937	1480	0.086

glandular tissue

muscle fibroadenoma

HAS phase aberration correction in pseudoskull

 Calculated phase offsets to match measured thickness from HAS model

HAS beam modeling

256 element phased array (Imasonics, Inc.)
1 MHz, 13cm radius of curvature
Hybrid Angular Spectrum (HAS) method
Focal spot ~ 2mm x 13mm

Generally thinner than reality

Adding scattering to HAS:

- Creates a more realistic picture of transcranial heating
- Provides more accurate model of beam propagation in scattering media
- Will lead to:
 - more accurate understanding of beam focusing for all HIFU applications
 - More accurate SAR prediction