Modeling of MR-guided HIFU for Breast and Brain Therapy

Douglas A. Christensen, Allison Payne, Nick Todd, Scott Almquist, Alexis Farrer and Dennis L. Parker

University of Utah
Salt Lake City, Utah
Overview

- High-Intensity Focused Ultrasound (HIFU) Surgery
 - Critical needs: locating the beam; full 3D temperature images; accurate beam modeling

- Beam Modeling with Hybrid Angular Spectrum (HAS) Method

- Application to Brain and Breast
 - Phase aberration correction
 - Incorporating absorption and scattering
Critical Need 1: Locating Beam

Use Acoustic Radiation Force Imaging (ARFI) with MRI at geometric focus in phantom:

ARFI

temperature

steered 5,5,5 mm in phantom:

ARFI

temperature

coronal

sagittal
Critical Need 2: Measure Temperature throughout Full 3D Volume

Ultrasound Parameters:
- 256-element transducer
- 30-s single point sonication
- 48 W

MR Parameters:
- 36 slices
- 8x undersampled
- 1.25 x 1.25 x 3.0 mm
- 1.8 sec / frame
- TR / TE = 25 / 11ms
- EPI 9
- 240 x 158 x 108 mm

Use Model Predictive Filtering with an acoustic and thermal model
Experimental Results: 3D Temperature Measurements

coronal transverse sagittal

ex vivo meat agar phantom skull segment transducer

Nick Todd et al., Mag Res Med 2010, 63(5), 1269-1279
Critical Need 3: Accurate Ultrasound Beam Simulations

- Needed for:
 - Treatment planning
 - Safety assurance
 - Transducer design
 - Phase aberration correction (skull and breast)

Bone metastases:

InSightec Ltd, Israel
3D Ultrasound Beam Modeling Methods

• Homogeneous Media:
 – Rayleigh-Sommerfeld integral
 • Classic, accurate

• Inhomogeneous Media:
 – Finite-Difference Time-Domain (FDTD)
 • Transient and steady-state behavior, fine grid, slower
 – Hybrid Angular Spectrum (HAS)
 • Steady-state, linear, fast
 • Leapfrogs between space and spatial-frequency domains
space domain

transducer p_t

Rayleigh-Sommerfeld integral

p_0

plane 1

plane 2

plane n…

equivalent thin layers

inhomogeneous tissue

projection direction

Hybrid Angular Spectrum (HAS)

spatial-frequency domain
(angular spectrum)

FFTF

$A_1^{-1}(\alpha, \beta)$

linear propagation filter

$A_1(\alpha, \beta)$

FFT$^{-1}$
HAS Method

• Comparable to FDTD results within 2.8% (3D breast model).*

• Two orders of magnitude faster:
 FDTD – 67 min HAS – 9.5 sec

• Example simulation:
 transducer: 1.5 MHz beam direction
 3D model: 141 x 141 x 161

3D pressure pattern:

*wVyas, U. and Christensen, D.,
IEEE Trans UFFC, 59 (6), 1093-1100 (2012)
Application of Beam Modeling to Transcranial Treatments

InSightec 650-kHz ExAblateNeuro

Variable skull thickness in beam path leads to phase aberration
Phase Aberration Correction through Skull

512 x 348 x 488 model
0.6 x 0.43 x 0.43-mm resolution

1024-element phased array

impose negative of phase

With parallelization on GPU, total phase correction took 183 seconds
Pressure Patterns through Skull

no phase correction

Max pressure at focus - 2.4×10^5 Pa normalized to 8 W total

phase correction

Max pressure at focus - 6.6×10^5 Pa
Power Deposition Q Patterns through Skull

Max Q at focus- 2500 W/m³
Ratio $Q_{\text{focus}}/Q_{\text{skull}}$ - 0.51

Max Q at focus- 18,000 W/m³
Ratio $Q_{\text{focus}}/Q_{\text{skull}}$ - 2.4
Experimental Results for Phase Correction

- Experimental setup:
 - 3D-printed plastic skull model
 - Random variations in thickness
 - Phase shifts up to 2π
Experimental Setup to Test for Phase Correction

- MRI compatible HIFU device with 256-element phased-array transducer (Image Guided Therapy, Imasonic)
- Plastic pseudoskull on bottom of agar phantom
- Temperature measurements with MRTI (prf method)
Temperature Results with/without Phase Correction

no phase correction

phase correction

coronal

transverse

sagittal
Application to Univ. of Utah Breast HIFU System

Univ. of Utah Breast-Specific Treatment Cylinder

256-channel phased-array transducer (Imasonic)

integrated 11-channel RF coil (Univ. of Utah)*

Univ. of Utah Breast-Specific HIFU System

- Siemens Trio 3T MRI
- Ultrasound power drivers
- MRI bore
- Phased-array transducer
Phase Aberration Correction in Breast

- Develop full 3D tissue model
 - Segment tissues with multiple contrasts
 - Estimate acoustic properties for each tissue type
 - Model beam propagation using HAS
 - Adjust transducer element phases

Alexis Farrer, ISTU 2013, poster 28
Example of Phase Correction in Breast

Pressure patterns

Alexis Farrer, ISTU 2013, poster 28
Adding Scattering to HAS Algorithms

Provides more accurate modeling of attenuation

Models:

- **A: Implicit** \(\alpha_{abs} < \alpha_{total} \)
 - Pressure drop due to total attenuation coefficient
 - Power deposition (heating) due only to absorption coefficient

- **B: Explicit (within voxel)**
 - Explicit random scatter fraction within each voxel
 - Scattered wave modeled

- **C: Explicit (variations larger than voxel)**
 - Variations in speed of sound, attenuation, density
 - Tissue-specific with normally distributed variations
A. Implicit: Separate Attenuation into Two Components

Typical: attenuation = absorption

\[p_2 = p_1 e^{-\alpha_{\text{total}} D_z} \]

Improved: attenuation = absorption + scattering

\[p_2 = p_1 e^{\left(-\alpha_{\text{abs}} + \alpha_{\text{scatt}} \right) D_z} \]

- heat
- scattered power
A. Implicit: Transcranial Power Deposition Patterns

No scattering:
absorption = total attenuation
skull att = 2.1 Np/cm; brain att = 0.06 Np/cm
frequency = 1.0 MHz

With scattering:
absorption < total attenuation
skull abs = 50% att*; brain abs = 80% att*
skull sca = 50% att*; brain sca = 20% att

peak power brain/peak power skull = 0.29
peak power brain/peak power skull = 0.47

B. Explicit: Small Scatterers within Each Voxel

Scattered beam pressure pattern alone in breast (volume with scattering – volume without scattering)

$\alpha_{\text{scatter}} = 40\% \ \alpha_{\text{total}}$
C. Explicit: Larger Property Variation across Voxels

Scattered beam pressure pattern alone in breast (volume with scattering – volume without scattering)

standard deviation = 2%, correlation length = 6 mm
C. Explicit – Effect of Scattering on Focused Spot

- Peak pressure at focus = 85% of no-scattering value
- Focused spot size blurred
Future Plans

• New NIH grant: Improvements in breast system (coils, cylinder)
 – IDE approval
 – Heading toward clinical trials

• Continuing NIH grant: Rapid 3D temperature mapping in brain
 – Model Predictive Filtering
 – Estimation of tissue parameters for treatment planning and assessment

• Collaborations (FUSF): Validation of simulations
 – Mapping of CT Hounsfield units to acoustic parameters
 – Continued ARFI development
Acknowledgments

The UCAIR group

Funding from:
The FUS Foundation,
The Margolis Foundation,
Siemens Healthcare AG,
NIH R01s:
CA87785, CA134599, EB013433
Thank you -
Any questions?
High-Intensity Focused Ultrasound (HIFU) Surgery

Critical needs:

• Treatment planning
 – Beam localization
 – Beam modeling
 • Phase and attenuation correction
 • Beam profile/SAR prediction: Optimize delivery of energy to treatment position
 • Minimize heating of adjacent and near-field tissues

• Treatment Control
 – 3D Temperature monitoring
 – Tissue damage assessment (Todd et al., ISTU 2013 Tuesday)

3D MR-ARFI; 3D MRTI

3D MRTI (MR Temperature Imaging)
3D MRI temperature measurements

MPF: Experimental results

2-D Skull Surface Projection

Coronal

- Temperature Rise (°C)
- Time (sec)
- Focus
- Skull Surface

Color Scale:
- 5° C
- 4
- 3
- 2
- 1
- 0
- -1
- -2

Utah Center for Advanced Imaging Research
High-Intensity Focused Ultrasound (HIFU) Surgery

Critical needs:

• Treatment planning
 – Beam localization
 – Beam modeling

 3D MR-ARFI; 3D MRTI

• Phase and attenuation correction
• Beam profile/SAR prediction: Optimize delivery of energy to treatment position
• Minimize heating of adjacent and near-field tissues

• Treatment Control
 – 3D Temperature monitoring
 – Tissue damage assessment (Todd et al., ISTU 2013 Tuesday)
High-Intensity Focused Ultrasound (HIFU) Surgery

Critical needs:

• Treatment planning
 – Beam localization
 3D MR-ARFI
 – Beam modeling
 Hybrid Angular Spectrum (HAS)
 • Phase and attenuation correction
 • Beam profile/SAR prediction: Optimize delivery of energy to treatment position
 • Minimize heating of adjacent and near-field tissues

• Treatment Control
 – 3D Temperature monitoring
 – Tissue damage assessment
HAS for beam phase correction

3D Vibe with Contrast

axial sagittal coronal

- Develop fully 3D tissue model
 - 3D MRI covering full volume
 - 1-mm isotropic resolution, ZFI to 0.5 mm spacing
HAS for beam phase correction

- Develop fully 3D tissue model
 - Multiple image contrasts
 - Zero-fill interpolate to 0.5-mm isotropic spacing

Alexis Farrer, ISTU 2013, poster 28
HAS for beam phase correction

- Develop fully 3D tissue model
 - Segment tissues

Alexis Farrer, ISTU 2013, poster 28
HAS for beam phase correction

- Estimate acoustic properties for each tissue type

<table>
<thead>
<tr>
<th>Tissue Type</th>
<th>Density (kg/m³)</th>
<th>Speed of Sound (m/s)</th>
<th>Attenuation (Np/cm*MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>1000</td>
<td>1500</td>
<td>0</td>
</tr>
<tr>
<td>Skin</td>
<td>1100</td>
<td>1537</td>
<td>0.28</td>
</tr>
<tr>
<td>Breast fat</td>
<td>928</td>
<td>1436</td>
<td>0.07</td>
</tr>
<tr>
<td>Fibroglandular tissue</td>
<td>1058</td>
<td>1514</td>
<td>0.09</td>
</tr>
<tr>
<td>Tumors/Fibroadenoma</td>
<td>1041</td>
<td>1584</td>
<td>0.081</td>
</tr>
<tr>
<td>Nipple cover</td>
<td>937</td>
<td>1480</td>
<td>0.086</td>
</tr>
</tbody>
</table>
HAS phase aberration correction in pseudoskull

- Calculated phase offsets to match measured thickness from HAS model
HAS beam modeling

256 element phased array (Imasonics, Inc.)
1 MHz, 13cm radius of curvature
Hybrid Angular Spectrum (HAS) method
Focal spot ~ 2mm x 13mm

Generally thinner than reality
Adding scattering to HAS:

- Creates a more realistic picture of transcranial heating
- Provides more accurate model of beam propagation in scattering media
- Will lead to:
 - more accurate understanding of beam focusing for all HIFU applications
 - More accurate SAR prediction