Multiphysics Framework for Modeling of FUS/HIFU and Induced Effects

E. Neufeld, IT'IS Foundation
A.Kyriakou, IT'IS Foundation / ETH Zurich
B.Werner, Kinderspital Zurich
N. Kuster, IT'IS Foundation / ETH Zurich

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Outline

- Introduction
- Part I: FUS/HIFU Multiphysics Framework
- Part II: Applications
- Part III: US & Thermal Modeling of tcMRgFUS
- Conclusions & Future Work
- Acknowledgements & Funding

Outline

Introduction

- Part I: FUS/HIFU Multiphysics Framework
- Part II: Applications
- Part III: US & Thermal Modeling of tcMRgFUS
- Conclusions & Future Work
- Acknowledgements & Funding

Introduction: MRgFUS & Applications

- advances in MR guided Focused Ultrasound (MRgFUS) allow use of US waves for therapeutic purposes
- modeling required for:
 - safety and efficacy assessment of ultrasonic devices (for therapeutic/diagnostic purposes)
 - device design and optimization
 - patient-specific treatment planning for acoustic therapies
 - outcome analysis & understanding of underlying mechanisms
- applications of interest to us:
 - evaluation and optimization of novel transducers/applicators for superficial and deep tumor ablation
 - modeling and treatment planning of FUS ablation (tumors and functional neurosurgery)
 - novel applications of FUS

Introduction: tcMRgFUS Neurosurgery

- clinical applications:
 - brain tumor ablation
 - functional neurosurgery: movement disorders (Parkinson's, essential tremor, dystonia...), neuropathic pain treatment, epilepsy, OCD
- pre-clinical applications:
 - reversible BBB disruption (focal drug delivery and activation to counter CNS diseases)
 - thrombolysis
 - neural stimulation
- special issues:
 - large number of transducer elements
 - distortion and focusing
 - skull heating, hot-spots

Part I: FUS/HIFU Multiphysics Framework

- Framework
- Validation
- Conclusions & Future Work

Part I: FUS/HIFU Multiphysics Framework

- Framework
- Validation
- Conclusions & Future Work

Framework: Overview

- simulation platform
 - 3D modeling, anatomical models
 - simulation setup (parameters, gridding, voxeling...)
 - scripting, visualization, post-processing
- segmentation platform
 - segmentation of MRI/CT image data
- solvers:
 - acoustic solver
 - µ-Bubble solver
 - thermal solver
 - flow solver

Framework: Image Segmentation

- custom software
- tool box with many, flexibily combinable segmentation methods
 - robust techniques ranging from: highly interactive (e.g., live wire, interactive watershed transform, brush) ↔ highly automatic (e.g., improved k-means-based clustering, competitive fuzzy connectedness, competitive growing)
 - method specific user interactions paradigms
 - novel techniques (e.g., Gamma method based clustering, image based adaptation)
 - routines for noise reduction, hole/gap/island removal, smoothing, skin adding, connected component analysis
- live-wire based method for vascular tree extraction (vessel wall extraction to be improved)
- topologically flexible interpolation
 - not every slice has to be segmented

OUNDATION

- image based adaptation based on fuzzy logic

Segmentation

Framework: Virtual Population

- CAD models, >200 distinguished organs/tissues
- extensive literature-based tissue parameter database (online)
- pregnant women, animal models (dog, mice, rats, pig)

Framework: Posing / Morphing

Framework: Acoustic Solver: Models

- selected numerical models:
 - linear propagation: linear acoustic pressure wave equation

$$\rho \nabla \frac{1}{\rho} \nabla p - \frac{1}{c^2} \frac{\partial^2 p}{\partial t^2} - \frac{\widetilde{a}}{c^2} \frac{\partial p}{\partial t} = 0$$

- non-linear propagation: Westervelt-Lighthill equation:

$$\rho \nabla \frac{1}{\rho} \nabla p - \frac{1}{c_0^2} \frac{\partial^2 p}{\partial t^2} + \frac{\delta}{c_0^4} \frac{\partial^3 p}{\partial t^3} + \frac{\beta}{2\rho_0 c_0^4} \frac{\partial^2 p^2}{\partial t^2} = 0$$

 $p: \text{pressure}, \ c: \text{equilibrium speed of sound in medium}, \ \rho: \text{equilibrium density of medium} \\ \alpha: \text{attenuation coefficient of medium}, \ \delta: \text{diffusivity of medium}, \ \beta: \text{nonlinearity parameter}$

Framework: Acoustic Solver

- acoustic Solvers:
 - 3D FDTD solvers for highly inhomogeneous anatomies (accounting for air-tissue and bone-tissue interfaces)
 - linear & non-linear variants
 - parallelization
 - CPU: OpenMP, up to 9x speed-up on 12 cores
 - GPU: CUDA, up to 36x speed-up on single GPU
 - Perfectly Matched Layer (PML) absorbing boundary conditions (allowing for domain truncation along inhomogeneous interfaces)

Framework: µ-Bubble Solver

- effect of µ-bubble sonication on BBB disruption (LTNT, ETH Zurich):
 - encapsulated µ-bubble in capillary
 - sonication by incident FUS field
 - cavitation
- implementation:
 - FVM simulation using FSI
 - bubble motion with modified Rayleigh-Plesset ODE accounting for confinement in vessel and viscoelastic lipid shell
- lumped parameter model:
 - UCA concentration -> modified effective tissue properties -> modified macroscopic pressure -> (shear) stresses on vessel wall

Framework: Thermal Solver I

 Pennes Bioheat Equation, widely used in thermal modeling:

$$\rho c \frac{\partial T}{\partial t} = \nabla \cdot (k \nabla T) + \rho Q_{acoust.} + \rho Q + \rho_b c_b \rho \omega (T_b - T) \text{ where } Q_{acoust.} = \alpha \frac{p_{an}^2}{c}$$

- common caveats of most implementations
 - not accounting for directivity of blood flow
 - not accounting for the discreteness of vessels
 - assumption of local equilibrium between blood and environmental T (only true for small capillaries / arterial bleed-off)
 - not considering temperature dependence of tissue parameters
- sophisticated thermal solver modeling the complex thermal phenomena required to accurately simulation ablation

Framework: Thermal Solver II

- high performance explicit & implicit FD solvers
 - conformal schemes to reduce staircasing effects
 - thin structure models (accuracy & speed)
- temperature dependent tissue parameters
 - thermoregulation, vascular shut-down
- perfusion modeling
 - DIVA (Lagendijk), effective tensorial thermal conductivity, convection based on CFD simulation for major vessels
 - coupling of the 3D simulation to a pseudo-1D simulation of the vessel network
 - Isod flow directivity (improved accuracy and over 100x acceleration)
 - support for MR perfusion maps
- thermal dose (CEM43) and tissue damage (Arrhenius) modeling

Framework: Flow Solver

- acoustic streaming
- microbubble concentration
- flow solver:
 - incompressible Navier-Stokes equation
 - coupled with the acoustics solver through Reynold stresses term
 - GMRES with a Schur complement preconditioning method
 - parallelized through MPI & PETSc

Part I: FUS/HIFU Multiphysics Framework

- Framework
- Validation
- Conclusions & Future Work

Validation: Approaches

approaches

- analytical validation (complete): comparison against analytically calculated fields
- validation against software (complete): comparison against FOCUS simulations with the Gamma Dose Distribution (GDD) method
- experimental (ongoing): 3D pressure field measurements of focused US transducer distorted by predefined obstacles

Validation: Measurement Setup

- components
 - plexiglass water-tank lined with acoustic absorbers
 - removable & adjustable sample holder with mounted transducer (550kHz, 80mm diameter)
 - acoustically characterized samples of different shapes and materials (delrin, polyurethane, RTV silicone) suspended with plexiglass rods in the beam path
- measurements
 - DASY52 NEO robot arm with a needle-type hydrophone and preamplifier

Validation: Measurement Setup

- components
 - plexiglass water-tank lined with acoustic absorbers
 - removable & adjustable sample holder with mounted transducer (550kHz, 80mm diameter)
 - acoustically characterized samples of different shapes and materials (delrin, polyurethane, RTV silicone) suspended with plexiglass rods in the beam path
- measurements
 - DASY52 NEO robot arm with a needle-type hydrophone and preamplifier

Validation: Measurement Setup

- components
 - plexiglass water-tank lined with acoustic absorbers
 - removable & adjustable sample holder with mounted transducer (550kHz, 80mm diameter)
 - acoustically characterized samples of different shapes and materials (delrin, polyurethane, RTV silicone) suspended with plexiglass rods in the beam path
- measurements

INDATION

 DASY52 NEO robot arm with a needle-type hydrophone and preamplifier

Validation: Results I

- empty water-tank (no sample) comparison
 - modified Gamma distribution comparison method
 - excellent agreement within given tolerances
 - dose criterion: 5% tolerance
 - distance criterion: $\lambda/2$

Validation: Results II

sample comparisons

- complex interference pattern
- ongoing effort: need for registration/alignment, large positioning uncertainties
- good visual agreement: reproduction of major field features, scale agreement
- polyurethane cylinder
 - speed of sound: 1700m/s
 - attenuation: 6dB/cm/MHz
 - density: 1130Kg/m³

Validation: Results III

sample comparisons

- complex interference pattern
- ongoing effort: need for registration/alignment, large positioning uncertainties
- good visual agreement: reproduction of major field features, scale agreement
- delrin cylinder
 - speed of sound: 2430m/s
 - attenuation: 3dB/cm/MHz
 - density: 1430Kg/m³

Part I: FUS/HIFU Multiphysics Framework

- Framework
- Validation
- Conclusions & Future Work

Conclusions & Future Work

- next steps
 - coupling: flow solver, microbubble solver
 - validation: complete experimental validation
- conclusions
 - a comprehensive framework that allows for full wave propagation in complex anatomical models has been developed and validated

Part II: Applications

- Experimental BBB Disruption
- Neuropathic Pain Treatment
- Neck Tumor Ablation
- Renal & Hepatic Tumor Ablation

Experimental BBB Disruption

- experiment:
 - in-vivo experiments on live mice
 - combined use of FUS & UCA approach
 - assess efficacy of increasing the BBB permeability
- anatomical simulations:
 - simulation of animal stage with FUS sonication of the brain through the skull

Neuropathic Pain Treatment

- MRgFUS in tissue ablation:
 - non-invasive and precise tissue ablation
 - minimizes the risk of bleeding and infection,
 - avoids damage to non-targeted tissue
 - does not involve ionizing radiation
- neuropathic pain treatment:
 - micro-thalamotomy on live patients to treat chronic neuropathic pain with phased-array ultrasonic transducers
 - simulations will allow for patient-specific treatment planning and parameter exploration

Neck Tumor Ablation

- usage of the SonoKnife applicator to ablate superficial tumors in the head and neck region (tumor volume needs to be covered by scanning)
- simulations:
 - ablation of locally-advanced head and neck squamous cell carcinomas (HNSCC)
 - anatomically detailed model segmented from MRI data (Virtual Family)
 - model tailored to take into account tissue-air and tissue-bone interfaces

Renal & Hepatic Tumor Ablation I

- renal & hepatic tumor ablation (Salomir R, Petrusca L):
 - usage of MRgFUS to create lesions in the renal cortex and the liver is experimentally investigated on ex-vivo ovine kidneys and live sheep
- simulations:
 - segmented model of an ex-vivo kidney surrounded by fat and muscle tissue
 - segmented model of a live sheep including the ribcage and all major organs in the vicinity of the liver
 - understand unexpected focus shape

Renal & Hepatic Tumor Ablation II

Conclusions

- developed framework can be applied to investigate large range of relevant applications
 - tumor ablation
 - functional neurosurgery
 - reversible BBB opening
 - applicator development

Part III: US & Thermal Modeling of tcMRgFUS

- Introduction
- US & Thermal Simulations
- Results
- Conclusions & Future Work

Part III: US & Thermal Modeling of tcMRgFUS

- Introduction
- US & Thermal Simulations
- Results
- Conclusions & Future Work

Introduction: Simulations

• why simulations?

- treatment planning (prediction & optimization of focus size, position & intensity)
- risk assessment & reduction (standing waves, secondary foci \rightarrow hemorrhages)
- steering range increase (safely focus in currently unreachable areas)
- prediction/prevention of skull heating
- parameter sensitivity studies
- technical optimization: applicator development
- requirements:
 - patient specific
 - fast & high-resolution
 - full-wave modeling (especially for applicators without principal propagation direction, e.g. ExAblate) in inhomogeneous anatomies
 - temperature and effect prediction (e.g. lesion size)

Part III: US & Thermal Modeling of tcMRgFUS

- Introduction
- US & Thermal Simulations
- Results
- Conclusions & Future Work

Simulations: US Setup

- applicator: ExAblate4000
 - 1024 transducer elements (area: ~1cm²)
 - 230kHz
 - focal depth: 150mm
- head model: Duke (Virtual Population)
 - segmented from hi-res MR data of 34yr male volunteer
 - 45 tissues distinguished in the head
- simulation setup:
 - target in the thalamus: (0.0mm, -5.7mm, 22.8mm) off geometric focus

- inverse propagation simulation
- element phasors:
 - distance-based / simulation-based
 - normalized to 1kW total acoustic power
- forward propagation simulation:
 - distance-based phases, fixed (120kPa) amplitudes
 - simulation-based phases, fixed (120kPa) amplitudes
 - simulation-based phases, simulationbased (norm. to 120kPa) amplitudes:
 - Iinear
 - non-linear: base & 1st harmonic

- inverse propagation simulation
- element phasors:
 - distance-based / simulation-based
 - normalized to 1kW total acoustic power
- forward propagation simulation
 - distance-based phases, fixed (120kPa) amplitudes
 - simulation-based phases, fixed (120kPa) amplitudes
 - simulation-based phases, simulationbased (norm. to 120kPa) amplitudes:

Iinear

INIDATION

non-linear: base & 1st harmonic

- inverse propagation simulation
- element phasors:
 - distance-based / simulation-based
 - normalized to 1kW total acoustic power
- forward propagation simulation
 - distance-based phases, fixed (120kPa) amplitudes
 - simulation-based phases, fixed (120kPa) amplitudes
 - simulation-based phases, simulationbased (norm. to 120kPa) amplitudes:

Iinear

INIDATION

• non-linear: base & 1st harmonic

- inverse propagation simulation
- element phasors:
 - distance-based / simulation-based
 - normalized to 1kW total acoustic power
- forward propagation simulation
 - distance-based phases, fixed (120kPa) amplitudes
 - simulation-based phases, fixed (120kPa) amplitudes
 - simulation-based phases, simulationbased (norm. to 120kPa) amplitudes:

Iinear

INIDATION

• non-linear: base & 1st harmonic

- inverse propagation simulation
- element phasors:
 - distance-based / simulation-based
 - normalized to 1kW total acoustic power
- forward propagation simulation
 - distance-based phases, fixed (120kPa) amplitudes
 - simulation-based phases, fixed (120kPa) amplitudes
 - simulation-based phases, simulationbased (norm. to 120kPa) amplitudes:
 - Inear

I INDATION

• non-linear: base & 1st harmonic

Simulations: Thermal Simulations

heat source:

$$Q = a \frac{p^2}{\rho c}$$

- settings (all steering approaches):
 - 30' without sonication to reach thermal equilibrium + 20" of sonication
 - convective boundary conditions for water (16°C) and air (25°C) cooling
 - impact of vascular shutdown on temperature increase

Part III: US & Thermal Modeling of tcMRgFUS

- Introduction
- US & Thermal Simulations
- Results
- Conclusions & Future Work

IT FOUNDATION

Results: Temperatures & Lesion Sizes

Temperature - Time @ Focus for 1000W Acoustic Power

						Distance-Based Phases, Fixed		Temperature F		FWHM			45°C			50°C			55°C		
60				_	-	(120kPa) Amplitudes		Max	dX	dY	dZ										
55 50 antradu 45			_			Simulation-Based Phases, Fixed (120kPa) Amplitudes	Distance-Based Phases, Fixed (120kPa) Amplitudes (focus off by 1.8mm on Z axis)	48.04	3.5	3.8	4.6	2.7	2.9	4.4	N/A	N/A	N/A	N/A	N/A	N/A	
40						charles and the	Simulation-Based Phases, Fixed (120kPa) Amplitudes	55.9	4	4.1	4.6	4.7	4.7	5.2	2.9	3	3.3	0.6	0.6	0.8	
35 30 0 2 4 6	8 10 12 Sonication Time [sec]	14	16	18	20	Simulation-based Phases, Simulation-Based (Normalized to 120kPa) Amplitudes	Simulation-Based Phases, Simulation-Based (Normalized to 120kPa) Amplitudes	58.88	4	4.1	4.5	5.2	5.1	5.5	3.4	3.4	3.9	2	1.9	2.3	

Results: Temperature Iso-Surfaces: 45°C

Results: Temperature Iso-Surfaces: 50°C

Results: Temperature Iso-Surfaces: 55°C

Results: Non-linearity & Vascular Shutdown

- non-linear US propagation
 - performed for 3rd steering approach
 - negligible impact on pressure & temperature results
 - pressure amplitude & frequency not high enough to induce strong harmonics/energy deposition
- vascular shutdown
 - complete shutdown assumed between 50°C and 51°C
 - +1°C temperature in focus area

Part III: US & Thermal Modeling of tcMRgFUS

- Introduction
- US & Thermal Simulations
- Results
- Conclusions & Future Work

Conclusions

- application to tissue ablation in the brain with ExAblate (quantitative)
 - full-wave, HPC enabled (~5' for linear) US simulations with high anatomical and physical complexity
 - could help improve efficiency, increase attainable focus locations, reduce treatment time and risk
- examined
 - impact of focusing strategy & focus shifting
 - temperature increase
 - lesion shape & size
 - impact of non-linear US propagation
 - Impact of vascular shutdown

Future Work

- apply this approach to the 650KHz system
- extended validation
 - ultimate goal: ex-vivo/in-vivo MR thermometry validation
- optimization
 - alternative steering approaches
 - hot-spot reduction
 - time-modulated steering
 - goal weighting

Outline

- Introduction
- Part I: FUS/HIFU Multiphysics Framework
- Part II: Applications
- Part III: US & Thermal Modeling of tcMRgFUS
- Conclusions & Future Work
- Acknowledgements & Funding

Conclusions

- comprehensive framework for modeling of FUS and induced effects has been developed
 - full-wave acoustic solver ideally suited for complex wave propagation in inhomogeneous anatomical models
 - cavitation modeling
 - induced heating and tissue damage
 - integrated into multi-physics framework (flow, EM, CRD, mechanics...)
 - HPC enabled, high resolution
- realism in simulations

- detailed anatomical models & segmentation platform for model creation
- comprehensive tissue parameter databases, towards personalized tissue properties and dynamic tissue models
- sophisticated thermal models (perfusion/thermoregulation tissue damage, dose)
- framework has been applied to wide range of relevant applications

Conclusions

- can be used for quantitative assessments and investigation of mechanisms / parameter studies (example: tcFUS)
- goal: patient specific treatment optimization

future work:

- importance of validation of software and models; ongoing
- optimization of steering

Acknowledgements & Funding

Technical and clinical expertise and much valuable interaction:

- Kinderspital Zurich
- BIWI & LTNT, ETH Zurich
- University/Hospital Arkansas
- Hôpitaux Universitaires de Genève
- University of Basel
- Erasmus MC, Daniel den Hoed Cancer Center, Rotterdam

Funding:

- CTI
- CO-ME (SNSF)
- ZMT