

Uncertainties in Radiation Medicine: An Oncologist's Perspective

Michael Milosevic

Department of Radiation Oncology, University of Toronto Radiation Medicine Program, Princess Margaret Cancer Centre

Toronto, Canada

Personalized Radiation Medicine

Anatomic targeting

Molecular targeting

Complementary strategies to improve tumor control and reducing side effects

Uncertainty is Context-Specific

The clinical significance of uncertainties depends on patient, tumor and treatment related factors

Pelvic IMRT for cervical cancer

MRgBT for cervical cancer

Uncertainties and Clinical Outcome

Implications of dosimetric uncertainties for tumor control and toxicity

Tanderup, 2013

Clinical Challenges

- Harmonizing care in the face of uncertainty
 - Target delineation
 - Internal target and OAR motion
 - Tumor regression and deformation
 - CTV margin for subclinical tumor
 - Clinical response to a shrinking tumor
- Measuring and reporting clinical outcomes
 - Harmonization of care improves our ability to demonstrate clinical benefit

Priorities in Radiation Medicine

Resource limitations (costs) impose constraints

Harmonizing Clinical Care

Harmonizing care in the face of uncertainty

- Standardization
- Clinical practice guidelines
- Consensus statements
- Clinical trials
- Peer review
- Education and training

ICRU Target Definitions

ICRU 50 and 62

GTV: Gross tumor volume

- 'Visible' tumor

CTV: Clinical target volume

- Microscopic tumor

ITV: Internal target volume

- Target motion

PTV: Planning target volume

- Setup variability

IGRT Guidelines

ASTRO White Paper on Quality and Safety in IGRT, 2013

Target Delineation

... the weakest link in the search for accuracyin radiotherapyC.F. Njeh, J Med Phys, 2008

19 international experts in GYNE radiation oncology

Lim, 2010

Improving Contour Agreement

- High quality imaging
 - Anatomic, metabolic, multi-parametric
- Contouring guidelines and atlases
- Simplification and automation
- Peer review
 - Radiation oncologists, other specialists
- Education and training

The Importance of Imaging

CBCT

Diagnostic CT

T2-MR

Cervical Cancer

Increasing physician confidence

The Importance of Imaging

FDG PET imaging to guide contouring in lung cancer

FDG PET CT

CT alone

Steenbakkers, 2006

The Importance of Imaging

Automated delineation of FDG PET metabolic target volume in lung cancer

Manual contours

Automated contours (40% of SUV_{Max})

van Baardwijk, 2007

Contouring Guidelines and Atlases

CONSENSUS GUIDELINES FOR DELINEATION OF CLINICAL TARGET VOLUME FOR INTENSITY-MODULATED PELVIC RADIOTHERAPY FOR THE DEFINITIVE TREATMENT OF CERVIX CANCER

KAREN LIM, M.B.B.S.,* WILLIAM SMALL, JR., M.D.,[†] LORRAINE PORTELANCE, M.D.,[‡] CARIEN CREUTZBERG, M.D., PH.D.,[§] INA M. JÜRGENLIEMK-SCHULZ, M.D., PH.D.,^{||} ARNO MUNDT, M.D.,[¶] LOREN K. MELL, M.D.,[¶] NINA MAYR, M.D.,^{**} AKILA VISWANATHAN, M.D.,^{††} ANUJA JHINGRAN, M.D.,^{‡‡} BETH ERICKSON, M.D.,^{§§} JENNIFER DE LOS SANTOS, M.D.,^{|||} DAVID GAFFNEY, M.D., PH.D.,^{¶¶} CATHERYN YASHAR, M.D.,[¶] SUSHIL BERIWAL, M.D.,^{***} AARON WOLFSON, M.D.,^{††} ALEXANDRA TAYLOR, F.R.C.R.,^{‡‡‡} WALTER BOSCH, PH.D.,^{§§§} ISSAM EL NAQA, PH.D.,^{§§§} AND ANTHONY FYLES, M.D. * FOR THE GYN IMRT CONSORTIUM.

Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group^{*} (I): concepts and terms in 3D image based 3D treatment planning in cervix cancer brachytherapy with emphasis on MRI assessment of GTV and CTV

Christine Haie-Meder^{a,*}, Richard Pötter^b, Erik Van Limbergen^c, Edith Briot^a, Marisol De Brabandere^c, Johannes Dimopoulos^b, Isabelle Dumas^a, Taran Paulsen Hellebust^d, Christian Kirisits^b, Stefan Lang^b, Sabine Muschitz^b, Juliana Nevinson^e, An Nulens^c, Peter Petrow^f, Natascha Wachter-Gerstner^b

Contouring Guidelines and Atlases

Seroma contouring guideline for partial breast RT

Greater contour agreement with training and adherence to guidelines

Case no.	Seroma target volume (cm ³)					
	Phase 1 Mean (SD)			Phase 2 Mean (SD)		
	Trained	Untrained	р	Doubly trained	Newly trained	р
1	187.4 (9.8)	207.4 (3.5)	0.008	68.6 (6.8)	69.4 (7.5)	0.87
2	74.8 (3.9)	100.2 (6.1)	0.0004	13.5 (4.4)	10.45 (2.1)	0.26
3	30.4 (2.2)	36.7 (2.8)	0.01	150.0 (5.3)	150.0 (14.4)	1.0
4	22.6 (4.9)	28.8 (3.8)	0.09	14.7 (1.0)	15.0 (2.8)	0.86
5	12.8 (5.6)	18.1 (4.8)	0.20	63.2 (16.9)	56.8 (16.2)	0.60

Wong, 2006

Peer Review of Treatment Plans

Original plan: Inadequate target coverage

Revised plan after peer review

Lefresne, 2013

Peer Review of Treatment Plans

CPQR Canadian Partnership for Quality Radiotherapy

PCQR Partenariat canadien pour la qualité en radiothérapie Programmatic Quality Assurance Guidance for Canadian Radiation Treatment Programs

www.cpqr.ca

6.10 Radiation Oncology Peer Review of Treatment Plans

Key Indicators	Indicator Range	
Percentage of adjuvant or curative radiotherapy treatment plans that undergo radiation oncology peer review at any time.	0-100%	
Percentage of adjuvant or curative radiotherapy treatment plans that undergo radiation oncology peer review prior to the start of treatment.	0-100%	
Percentage of adjuvant or curative radiotherapy treatment plans that undergo radiation oncology peer review after the start of treatment but before 25% of the prescribed dose has been administered.	0-100%	

The Importance of Internal Motion

Failure to compensate for tumor and OAR motion can offset the benefits of dose escalation and increase side effects

Crevoisier, 2005

Population PTV Margins

For Inter-Fraction Motion

For Intra-Fraction Motion

Wong, 2008

Cervical Cancer Extreme Motion

Cervix cancer (Week 1)

Cervix cancer (Week 3)

Extreme unpredictable motion

Cervical Cancer Regression

Tumor regression during treatment

Adaptive Radiotherapy

New uncertainties and challenges to assure optimal, safe treatment

MRgBT for Cervical Cancer

MR-guided brachytherapy for cervical cancer: Adapting to tumor regression during EBRT

GEC-ESTRO Cervix Guidelines

Planning constraints

- IR-CTV D₉₀
- HR-CTV D₉₀
- Sigmoid D_{2cc}
- Rectum D_{2cc}
- Bladder D_{2cc}

- >60 Gy₁₀
- >85 Gy₁₀
- <75 Gy₃
- <75 Gy₃
- <90 Gy₃

IR-CTV: Tumor volume at diagnosis HR-CTV: Tumor volume at brachytherapy

Haie-Meder, 2005; Kirisits, 2005 and Pötter, 2008

New ICRU Definitions

Revision of ICRU Report 38: *Prescribing, Recording, and Reporting Cervical Brachytherapy*

CTV-T Primary tumor clinical target volume
CTV-N Lymph node clinical target volume
iGTV Initial gross tumor volume
rGTV Residual gross tumor volume
aCTV Adaptive clinical target volume

A vocabulary for adaptive radiotherapy

Shrinking Tumor Volume?

Restricted diffusion as a function of target volume:

GTV	37% low ADC <1.2X10 ⁻³ mm ² /s
HR CTV	22%
IR CTV	12%

MRgBT for Cervical Cancer

145 patients T1b-3b RT+CT BED 80-85 Gy₁₀ Outcome at 3y Local control 88% **Overall survival** 58% Severe late toxicity 5%

Adaptive EBRT for Cervical Cancer

Dose-Difference Map

Weekly (or daily!) dose accumulation with adaptive replanning

Kristy Brock, James Stewart, Karen Lim

Harmonized Care Improves Outcome

Effect of protocol compliance in a HN cancer clinical trial

Peter, 2010

Summary

- The clinical significance of uncertainties depends on patient, tumor and treatment factors.
- Uncertainties about target volume, internal motion and response to a shrinking tumor currently limit further advances in tumor targeting (in some sites).
- Advances in biology and technology will enable more personalized radiation treatment, reduce some uncertainties and introduce new challenges.
- In the face of uncertainty, harmonization of clinical care based on expert consensus agreement can improve clinical outcome.