

Integrating knowledge in inverse treatment planning

Wilko Verbakel,

Jim Tol, Max Dahele VU university medical center

Disclosures

 Vumc has a research collaboration with Varian Medical Systems

IMRT (VMAT)

Inverse optimization

- Allows to create complex plans
- Irregular dose distributions
- Sparing of OAR

But

- Requires new knowledge
- Many parameters to set
- Which leads to optimal plans?
- How optimal is needed?
 - -Pareto optimal?
 - -Very optimal: for comparison with IMPT

Knowledge in inverse treatment planning

- Knowledge of patient anatomy
 - locations of OAR PTV
 - -PTV size
- Knowledge of past treatment plans, DVHs
 - -Library of plans accroding to institutional standard
 - -General correlations between OAR and PTV
- Knowledge of what should be achieved, for clinical relevance
- Knowledge of the optimizer
 - -Avoid trial and error in optimization
 - -Improve planning efficiency

What is a good IMRT plan?

- Differences in Treatment planning systems
- Differences in optimizer versions
 - -Eclipse: v10 versus v8.9, continute previous opt. (cpo)
- Depends on experience of planner
- Depends on institutional clinical protocol
 - PTV minimum dose coverage
 - RTOG: >95% should receive PD
 - EORTC: >95% should receive 95% of PD
 - PTV dose homogeneity (Dmax?)
- Depends on physician's experience
 - Who decides on OAR dose for a specific patient?
 - Or pareto-optimal?

Head and Neck: typical example

VUmc (1)

- Large PTVs
- Many OAR, parallel and serial
- Often 2-3 PTV dose levels
- Sequential boost versus SIB. SIB:
 - -One plan for all, but different dose levels
 - -Radiobiological conversion of lower PTV_E dose fractions Take into account overall treatment time (46Gy in 23fr or 54.25Gy in 35fr)
 - Entry and exit dose of boost can be used for lower dose levels.
 - -How to deal with transition zones between PTVs

Static IMRT:

- multiple fields, high modulation per field
- Longer delivery times
- Step and shoot versus sliding window

VMAT:

- Rotational IMRT
- Continuous modulation of leaves
- Mostly no higher modulation from preferred directions
- Short delivery times
- More variation between vendors in optimization algorithm
- Interactive non-interactive optimization

SmartArc (Pinnacle, Philips) optimization scheme

VUmc (1)

- 15 field IMRT optimization

- 3 segments, then discard 1

- Distribute 30 segm. over arc
- Interpolate to 46 segments
- Further optimization
- Dose calculation for 92 segments

RapidArc optimization

K.Otto, MedPhys 2008

- Different optimization strategies between versions
- Arc optimization by progressively increasing control points (up to 177)
 - start optimization (direct aperture) for few control points
 - As optimization progresses, new beams are inserted into the plan
- Dose (rate) and leaf positions are optimized at each control point;
- Sliding window interpolation
- Optimization by
 - DVH constraints
 - MU objective
 - Max leaf speed 2.5 cm/s → 0.5 cm per degree

Different VMATs

- Different optimization strategies:
 - Direct aperture optimization (RapidArc)
 - -Segmented IMRT optimization, followed by further optimization (SmartArc)
- RapidArc: no gantry slow down for more modulation
- No interactive optimization possible:
 - -Start with initial guess of OAR sparing
 - Often multiple optimizations necessary
 - -Can be automated
- Interactive optimization possible:
 - -Find trade-off between OAR sparing and PTV coverage while optimizing
 - Adapt objectives accordingly

VOLUMETRIC INTENSITY-MODULATED ARC THERAPY VS. CONVENTIONAL IMRT IN HEAD-AND-NECK CANCER: A COMPARATIVE PLANNING AND DOSIMETRIC

STUDY

IJROBP 2009; 74: 252-9

WILKO F. A. R. VERBAKEL, PH.D.,* JOHAN P. CULIPERS, PH.D.,* DAAN HOFFMANS, B.SC.,* MICHAEL BIEKER, M.D., PH.D.,* BEN J. SLOTMAN, M.D., PH.D.,* AND SURESH SENAN, M.R.C.P., F.R.C.R., PH.D.*

- 12 patients treated with 7-field sliding window IMRT
- Compare with RapidArc plans using 1and 2 arcs
- Film dosimetry in 3-5 coronal planes of QA phantom
- ⇒ 60% reduction in MU achieved (1108 to 439 MU)
- ⇒ comparable or better sparing of the organs at risk
- double arc plans improved dose homogeneity to PTVs
 - V95 =99.4% (IMRT: 98.8%), V107 = 0.2% (IMRT: 0.8%)
- ⇒ film measurements showed good agreement
 - Better than for IMRT
- ⇒ delivery time 73 seconds per arc

I arc versus 2 arc RA:VUmcdose homogeneity improves

DVH: single arc versus double

 2 arcs RA higher dose homogeneity in PTV Slightly better sparing of OAR

VMAT for H&N

- In 2008 at Vumc: large variation between 8 planners
- Individual preferences of different planners
- Often replanning needed
- → Systematic evaluation of optimal optimization:
 - → How to get (close to) pareto optimal plans
- Standardization of optimization
 - Choice of location and number of objectives
 - Priorities
 - -How to deal with overlap
 - -How to deal with different PTV doses
- Original time investment pays back in clinical cases
- Knowledge of VMAT optimizer

Knowledge of OAR position

- Example: parotid glands
- Where to put objectives?
- Potentially, calculate overlapping parts: above PTV, inside boost PTV, inside elective PTV

"Standard" constraint set

- PTVb: 69 / 71 Gy (p=130)
- PTVe: 57 / 58.5 Gy (p=130)
- Standard ring
- SC/brainstem (p=120)
- Shoulders
- PG-IL, PG-CL: (p=75)
- Adapt PG during first few minutes
- PG always tighter than DVF
- Exact location of OAR objectives not so important

PG objectives not tight enough VUmc

Tighter constraints, more PG +SC sparing

VUmc (1)=

More PG and SC sparing (right)

Optimization objectives

VUmc (1)=

Introduction of more OAR

- 2008: parotid glands (+spinal cord, brainstem)
 - -Oral cavity and other OAR by general ring structures
- 2009: sparing of Submandibular glands
- 2009: lower spinal cord dose if possible
- 2011: sparing of swallowing structures
- Sparing is possible
- Sometimes small underdosage of PTV locally
- Influence sparing new OAR on "old" OAR?
- "Dose dumping" elsewhere?

SMG-sparing versus non-sparing VUmc (

SMG-sparing versus non-sparing VUmc (

▲ clinical plan non-sparing plan

Now also sparing of swallowing structures Acceptance of more dose spread to posterior neck Locally PTV underdosage

Local PTV underdosage

- Not always visible in DVH
- More OAR, more sparing → more underdosage
 Solutions
- Local PTV expansion (+2mm)
 - -Also results in slightly higher OAR dose
- Extra local separate PTV in optimization:
 - PTV near OAR (OAR + 5mm expansion)
 - Extra minimum dose objective

Avoid local PTV underdosage

Effect of more OAR sparing

• No dose increase for other OAR (PG, SMG)

More sparing of OAR: loss of PTV coverage

VUmc (1)

Knowledge of past plans

- Library of good plans
- Relationship of geometry and achievable OAR dose
- Match new patient with model
- What about Pareto-optimality of library plans?
- Aim for best plans in library
- Differences in plan acceptance:
 - -V95: from 95-99% of PD, or D95 = PD
 - -Which maximum dose in PTV (V107, D2)
 - Between centers, between clinical studies: RTOG, EORTC, ...
- How does dose homogeneity to PTV influence OAR sparing?

Trade-off between PTV – OAR dose VUmc (

- 10 H&N patients (54.25Gy with SIB to 70Gy)
- RapidArc (Eclipse v10), 2arcs
- All plans CPO (continue previous optimization)
 - Proven to improve PTV dose homogeneity
- Multiple plans (13) per patient
- Spinal cord and brainstem +PRV Dmax < 48Gy
- Decreasing PTV priority (200-80)
- OAR priority constant 85, institutional interactive optimization
- Salivary OAR (PG, SMG, if mostly outside PTV)
- Swallowing OAR (indicated by clinician)
- $\mathsf{D}_{\mathsf{mean}}$ to salivary and to swallowing OAR

Trade-off between PTV – OAR dose VUmc (

Example of increased OAR sparing

Some structures are unapproved or rejected

Trade-off between PTV – OAR dose VUmc

- PTV dose homogeneity = 1 V95 + V107
- Average D_{mean} swallowing and D_{mean} salivary

Effect of PTV dose homogeneity

VUmc (1)

Distance measure – OAR dose at IH_B=5% VUmc (

DM= adapted Euclidean distance OAR-PTV → Predict achievable OAR sparing at certain IH_B

Further improving VMAT

• Effect of more arcs (2, 4, 6, 8)

Knowledge for automated planning VUmc (ME

- Effect of choosing very homogeneous PTV dose
 Choose priorities accordingly
- Distance measure of OAR-PTV
 - Works for PG IL, PG CL, SMG, swallowing OAR separately
- For chosen PTV dose homogeneity, predict possible OAR doses
- → Not needed to have a library of good plans, but library of plans exploring all trade-offs

Automatic planning strategies

- Using prior knowledge of patients
- Iteratively running optimizations, increasingly sparing OAR
- Theoretical work on smart multi-criteria optimization

Yuan L, Med Phys 2012

- Duke University mc, USA
- Automate VMAT or IMRT for H&N
- Library of previous patients: distance to target histogram
- Correlation between OAR-PTV geometry and OAR DVH
- For prostate and H&N IMRT
- Prediction of OAR DVH
- Use to set objectives in optimizer
- Requires library of **optimal** plans

Voet PWJ, IJROBP 2012

- Erasmus mc, Netherlands
- Automated multicriteria IMRT plan generation for H&N
- iCycle: beam angle and fluence profile optimization
- Create Pareto-optimal plans by first satisfying most important objective, then next, etc. stopping when deteriorating a more important objective

Constraints			
	Volume	Type	Limit
	PTV	Maximum	107% of prescribed dose
	Spinal cord	Maximum	48 Gy*
	Unspecified tissue	Maximum	107% of prescribed dose
Objectives			
Priority	Volume	Туре	Goal
1	PTV	LTCP	1
2	Parotid/SMG	↓Mean	39 Gy
3	Parotid/SMG	↓Mean	20 Gy
4	Oral cavity	↓Mean	39 Gy
5	Spinal cord/brain stem	↓ Maximum	30 Gy
6	External ring [†]	↓Maximum	90% of prescribed dose
7	Larynx + swallowing muscles	↓Mean	75% of prescribed dose
8	PTV shell 1 cm [‡]	↓Maximum	75% of prescribed dose
9	Parotid/SMG	↓Mean	10 Gy
10	PTV shell 4 cm [‡]	↓Maximum	40% of prescribed dose
11	Parotid/SMG	1 Mean	2 Gy

Final step: optimization by Monaco (for IMRT / VMAT)

Wu B, Med Phys 2013

- Johns Hopkins, USA
- Automate VMAT or IMRT for H&N
- Model based automated planning. Requires database of previous patients to determine location of optimization objectives for new pt
- Overlap Volume Histogram for 3D spatial relationship between OARs and PTVs
- Pinnacle + C++ subroutines
- Generate objectives for VMAT optimization

Quan EM, IJROBP 2012

- MD Anderson, USA
- Automated VMAT for st III lung cancer
- Uses Smartarc module (Pinnacle)
- Multiple optimizations

 necessary,
 progressively
 increasing OAR weights
- Long planning times

Acknowledgement

- VUmc: Jim Tol, Max Dahele, Ilonka Lischer, Ben Slotman
- Duke university: Jackie Wu

