IMPT – as important for proton therapy as IMRT for x-rays?

T. Bortfeld, S. Safai^{*}, A. Trofimov, J.A. Adams, M. Engelsman[^] Massachusetts General Hospital, Boston *Now at Paul Scherrer Institute, Villigen, Switzerland ^Now at University of Delft, The Netherlands

TBortfeld@hms.harvard.edu

IMRT – concave dose distributions

Conventional 3D conformal

Intensity Modulation

Concave dose distributions with pencil beam scanning: chest wall

H.-M. Lu et al., MGH

Field patching

 What is the advantage of IMPT over the most sophisticated 3D conformal proton therapy (3DCPT) with patched fields?

We are talking about *multi-field* IMPT only!

The most challenging geometric scenarios:

2. Critical structure "wraps around" tumor

Two clinical cases representing those scenarios:

Patient	Prescribed proton dose	Fields	Patching combinations	Dose delivered with patching (% of total prescribed proton dose)	Comment
Paraspinal chondrosarcoma	27 Gy (RBE)	4	2	100%	Boost following photon therapy
Skull-base chondrosarcoma	69 Gy (RBE)	9	2	17%	Pediatric patient. Patching: boost to GTV after initial proton therapy

Case 1: Multiply recurrent G2 chondrosarcoma T4 (Boost after photon therapy)

patch field combination

Note on the side: An issue with distal – lateral patching

Dose difference across the junction

2nd patch field combination

Proton plan ("3D conformal", 3DCPT)

Same case with IMPT

smooth overlap

extra dose for coverage

3D proton plan (3DCPT, no IM) vs. IMPT

RADIATION ONCOLOGY

Another note on the side: Penumbra sharpening with IMPT

Passive scattering

IMPT

Pedroni et al., Med. Phys. 22 (1995) 37

Message 1:

 "Sharp" (narrow) pencil beams are necessary to exploit the full potential of IMPT. IMPT delivered with a broad 10 mm (sigma) pencil beam may have no benefit over 3DCPT.

*All subsequent calculations done with 5 mm (σ) pencil beams

Case 2: skull-base chondrosarcoma

MASSACHUSETTS

NERAL HOSPITAL

Case 2: dose sparing 3DCPT vs. IMPT

RADIATION ONCOLOGY

Showing the mean dose reduction through IMPT

Robustness analysis: max. dose

Message 2:

 Careful robustness analysis is essential to evaluate the merit of IMPT. It may reveal that a nominal advantage of IMPT turns into an actual disadvantage.

Future developments required to exploit the full benefit of IMPT

- Sharper pencil beams -> finer "painting" of intensity layers
- Robust optimization, ideally in combination with multi-criteria optimization to control the tradeoff between robustness and plan conformality (W. Chen et al., PMB 57:591, 2012)
- Reduced range uncertainty (e.g. through some form of in-vivo range measurement)

IMPT – as important for proton therapy as IMRT for x-rays?

- No, because:
 - Complex concave dose distributions are achievable with compensators and patching.
 - Broad "brush" pencil beams available at most centers today are limiting.
 - Tools for robust analysis and optimization are not quite mature yet.
- There is a significant *potential* advantage of IMPT – but that requires a successful completion of future developments.

More details: Safai et al., PMB August 2013

Concave dose distributions w/o IM

