Opportunities for integration of imaging-based tumor growth and response models into multi-modal clinical trials

Robert Jeraj
Departments of Medical Physics, Human Oncology, Radiology and Biomedical Engineering
University of Wisconsin Carbone Cancer Center
rjeraj@wisc.edu
Why modeling?

Modeling bridges the gap between biology and outcomes.
Problem of dose painting

Anatomical imaging
Population-based
Uniform dose

Molecular imaging
Patient-specific
Non-uniform dose
Why modeling?

- Biological data
- Computational tumor modeling
- Observed therapeutic response

Experiments

Clinical trials

TOP-DOWN

BOTTOM-UP
How much dose?

Recurrence at Time Point

No Recurrence at Time Point

Dose 1
Dose 2
Dose 3

Uptake

Empirical fit
Upper 95 % C.I.
Lower 95 % C.I.
Response to different doses

- Measured response in FDG at 3 months is significantly different between two dose levels in patient population ($p = 0.02$)

Bowen et al 2012, Radiother Oncol, 105(1), 41
Empirical prescription function

\[
D_0(FDG_{pre}) \approx D_0(FDG_{pre}) + \frac{dD}{d(FDG_{pre})} \left(\frac{d(FDG_{post})}{d(FDG_{pre})} \right) \left(FDG_{post} - \langle FDG_{post} \rangle \right) - \langle FDG_{post} \rangle
\]

\[
D(FDG_{pre}) \approx 50 \text{Gy} + \frac{8 \text{Gy}}{\langle FDG_{post} \rangle_{42 \text{Gy}} - \langle FDG_{post} \rangle_{50 \text{Gy}}} \cdot (\beta_{42 \text{Gy}} - \beta_{50 \text{Gy}}) (FDG_{pre} - \langle FDG_{pre} \rangle)
\]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<FDG_{post} >_{42 \text{Gy}})</td>
<td>Mean 3 month post Tx FDG in response to 42 Gy</td>
<td>2.22 SUV</td>
</tr>
<tr>
<td>(<FDG_{post} >_{50 \text{Gy}})</td>
<td>Mean 3 month post Tx FDG in response to 50 Gy</td>
<td>1.18 SUV</td>
</tr>
<tr>
<td>(\beta_{42 \text{Gy}})</td>
<td>(FDG_{pre}) regression coefficient in response to 42 Gy</td>
<td>0.84</td>
</tr>
<tr>
<td>(\beta_{50 \text{Gy}})</td>
<td>(FDG_{pre}) regression coefficient in response to 50 Gy</td>
<td>0.15</td>
</tr>
</tbody>
</table>
“Top-down” derived dose prescription

FDG_{pre}

$D(FDG_{\text{pre}})$
Why modeling?

TOP-DOWN

- Biological data
- Computational tumor modeling
- Observed therapeutic response

BOTTOM-UP

- Experiments
- Clinical trials
Computational tumor modeling

MACROSCOPIC MODELS
+ model tumor propagation and boundary phenomena
+ can utilize clinical imaging
 – limited biology (if at all)

HYBRID MULTISCALE MODELS

MICROSCOPIC MODELS
+ cells modeled separately
+ can refer to microscopy
 – very simplistic/idealized
 – tumor size limit 1-2 mm³
Hybrid multiscale model

Therapy
Administration of radiation, monitor levels of e.g. VEGF-A, bevacizumab and other chemotherapeutic agents

(Simulate effects of different therapies over time)

General (globally valid)
input parameters

Patient-specific
input from clinical imaging

- CT
- PET₁
- PET₂

- Initial anatomy
- Proliferation
- Hypoxia

Cell-line-specific
input from preclinical tumor models

Cellular layer
Assuming 10⁶ cells/mm³, simulate cellular growth and death within ROI (or voxels) based upon biological principles, imaging data, and preclinical tumor models

Tissue layer

- simCT
- simPET
- simPET

- Anatomy
- Proliferation
- Hypoxia

ROI-based application
(average values)

- avg. & peak pO2
- avg. & peak SUV(FLT)
- avg. & peak SUV(CuATSM)
- avg. & peak PR
- SUV_{total} etc.

Voxel-based application
(ROI is spatially resolved)

- pO2 [i,j,k]
- SUV(FLT) [i,j,k]
- SUV(CuATSM) [i,j,k]
- PR [i,j,k]
- Voxels of ROI interact

Feedback

Titz and Jeraj 2008, Phys Med Biol, 53: 4471
Tumor simulation workflow

- Pre- and mid-treatment PET data
- Creation of a_{FLT} map
- Development of dose painting plans
- Simulation of end-of-treatment FLT

Titz and Jeraj 2008, Phys Med Biol, 53: 4471
Benchmarking the model

<table>
<thead>
<tr>
<th></th>
<th>Hypoxia pre-XRT</th>
<th>Proliferation pre-XRT</th>
<th>Proliferation early response</th>
<th>Proliferation SIMULATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>sag</td>
<td>![Image]</td>
<td>![Image]</td>
<td>![Image]</td>
<td>![Image]</td>
</tr>
<tr>
<td>ax</td>
<td>![Image]</td>
<td>![Image]</td>
<td>![Image]</td>
<td>![Image]</td>
</tr>
<tr>
<td>cor</td>
<td>![Image]</td>
<td>![Image]</td>
<td>![Image]</td>
<td>![Image]</td>
</tr>
</tbody>
</table>

Titz and Jeraj 2008, Phys Med Biol, 53: 4471
Tuning of the free parameters

Constant cell cycle time

\[R^2 = 0.7920 \]
\[P = <0.0001 \]

Proliferation-dependent cell cycle time

\[R^2 = 0.9360 \]
\[P = <0.0001 \]

Titz and Jeraj 2012, Phys Med Biol, 57: 6079
Adding vasculature

Initial vasculature map → Angiogenesis → Update Vasculature map

Cu-ATSM (Hypoxia) → pO_2 (Oxygen) → TAF → Update pO$_2$ map

Time t_0 → SUV

FLT (Proliferation) → Update proliferation tumor volume
Simulated vasculature based on hypoxia

Adhikarla et al 2012, Phys Med Biol, 57: 6103
Simulating IHC

Input hypoxia on top of vessels and proliferating cells

Simulated hypoxia & proliferating cells overlaid on vessels

Adhikarla et al 2012, Phys Med Biol, 57: 6103
Adding therapeutic module…

VEGFR TKI

Dose response relationships

SU plasma concentration

Initial vasculature map

Angiogenesis

Update Vasculature map

Initial vasculature map

Angiogenesis

Update pO$_2$ map

Update pO$_2$ map

Update proliferation tumor volume

Cu-ATSM (Hypoxia)

pO$_2$ (Oxygen)

TAF

Update proliferation tumor volume

pO$_2$ (Oxygen)

SUV plasma concentration

Time t_0

Time t
Response to VEGFR TKI

Vessels

Day 0

- **Control**
- **SU 10 mg/kg/day**
- **SU 40 mg/kg/day**

pO₂ mmHg

- 30
- 0

Day 6

Day 14
How to apply this to dose painting?

Extracting “radiosensitivity” (α_{eff})

Imaging-based input
- FDG_pre PET
- FLT_pre PET
- CuATSM_pre PET
- FLT_mid PET

simulate FLT_mid PET scan

compare, calculate RSS

can RSS be minimized?
- yes
- no

1. stat analysis of α_{eff} data
2. correlation with PET tracers
Extracting “radiosensitivity” α_{eff} values
Optimization based on α_{eff} values

\[D_i = D_{\text{Rx}} \left[\frac{D_{\text{base}}}{D_{\text{Rx}}} + \left(\frac{D_{\text{redistributed}}}{D_{\text{Rx}}} \right) \cdot \frac{\tilde{\alpha}_{\text{FLT}}}{\alpha_{\text{FLT},i}} \cdot \kappa \right] \]

- 5%, 10%, 25%, 50% and 100% redistributed D_{RX}
- $D_{i,max} = 200\% D_{\text{RX}}$ and integral dose constant

Harmon et al 2013, Phys Med Biol (in submission)
Simulation results - proliferation

Dose Plan	simFLT after 5 fx	simFLT after 10 fx	SF_{FLT} after 10 fx
Uniform Dose | ![Image](image1.png) | ![Image](image2.png) | ![Image](image3.png)
25% D_{Rx} redistributed | ![Image](image4.png) | ![Image](image5.png) | ![Image](image6.png)
50% D_{Rx} redistributed | ![Image](image7.png) | ![Image](image8.png) | ![Image](image9.png)
100% D_{Rx} redistributed | ![Image](image10.png) | ![Image](image11.png) | ![Image](image12.png)
How much dose to redistribute?

High gains suggest good candidacy.

Low gains suggest poor candidacy.
Why differences?

\[\alpha_{FLT} \text{ (Gy}^{-1}\text{)} \]

\[\alpha_{FLT} \text{ (Gy}^{-1}\text{)} \]

\[\alpha_{FLT} \text{ (Gy}^{-1}\text{)} \]
Why optimum?

\[\approx 56\% \ D_{Rx} \]

10% Radioresistant subvolume 10% Radiosensitive subvolume

10% Radioresistant subvolume 10% Radiosensitive subvolume
Conclusion

- Modeling **bridges the gap** between biology and clinical outcomes

- **“Top down” approach:**
 - Heuristically determine dose response parameters based on clinical response data

- **“Bottom up” approach:**
 - Developing the models based on basic biological principles
 - Fitting the models to observed phenotypes (e.g., “radiosensitivity”)

- **Hybrid approach:**
 - Where do the worlds meet?
Thanks to:

- **Image-guided therapy group**
 - Vikram Adhikarla
 - Tyler Bradshaw
 - Enrique Cuna
 - Ngoneh Jallow
 - Matt La Fontaine
 - Stephanie Harmon
 - Surendra Prajapati
 - Urban Simoncic
 - Peter Scully
 - Damijan Valentinuzzi
 - Natalie Weisse
 - Stephen Yip
 - Former students…

- **Funding**
 - NIH, PCF, UWCCC, Pfizer, AstraZeneca, Amgen, EntreMed

- **Medical Oncology/Hematology**
 - Glenn Liu
 - George Wilding
 - Mark Juckett
 - Brad Kahl
 - Anne Traynor

- **Human Oncology**
 - Søren Bentzen
 - Bert van der Kogel
 - Paul Harari
 - Mark Ritter

- **Radiology**
 - Scott Perlman
 - Chris Jaskowiak

- **Veterinary School**
 - Lisa Forrest
 - David Vail

- **Medical Physics**
 - Rock Mackie
 - Jerry Nickles
 - Onofre DeJesus

- **Phase I and GU Office**