Opportunities for integration of imaging-based tumor growth and response models into multimodal clinical trials

Robert Jeraj

Departments of Medical Physics, Human Oncology, Radiology and Biomedical Engineering University of Wisconsin Carbone Cancer Center

University of Wisconsin SCHOOL OF MEDICINE AND PUBLIC HEALTH

Why modeling?

Modeling bridges the gap between biology and outcomes

Problem of dose painting

Anatomical imaging Population-based Uniform dose

Molecular imaging Patient-specific Non-uniform dose

Why modeling?

How much dose?

Response to different doses

• Measured response in FDG at 3 months is significantly different between two dose levels in patient population (p = 0.02)

Bowen et al 2012, Radiother Oncol, 105(1), 41

Empirical prescription function

$D((HDG_{ppr})) \approx D(((HDG_{ppr}))) + \frac{dD}{dd(HDG_{ppr})} \cdot (\frac{d(FDG_{post})}{d(FDG_{prr})} + \frac{dD}{d(FDG_{prr})} - \langle FDG_{prr} \rangle$		
$D(FDG_{pre}) \approx 50Gy + \frac{8Gy}{\langle FDG_{post} \rangle_{42Gy}} - \langle FDG_{post} \rangle_{50Gy}} \cdot (\beta_{42Gy} - \beta_{50Gy}) (FDG_{pre} - \langle FDG_{pre} \rangle)$		
Symbol	Parameter	Value
$<\!\!FDG_{\rm post}\!>_{\rm 42Gy}$	Mean 3 month post Tx FDG in response to 42 Gy	2.22 SUV
<fdg<sub>post>_{50Gy}</fdg<sub>	Mean 3 month post Tx FDG in response to 50 Gy	1.18 SUV
$eta_{ m 42Gy}$	FDG_{pre} regression coefficient in response to 42 Gy	0.84
$eta_{ m 50Gy}$	FDG_{pre} regression coefficient in response to 50 Gy	0.15

"Top-down" derived dose prescription

90 Gy

Why modeling?

Computational tumor modeling

MACROSCOPIC MODELS

model tumor propagation and boundary phenomena
can utilize clinical imaging
limited biology (if at all)

HYBRID MULTISCALE MODELS

MICROSCOPIC MODELS

- + cells modeled separately
- + can refer to microscopy
- very simplistic/idealized
- tumor size limit 1-2 mm³

Hybrid multiscale model

Titz and Jeraj 2008, Phys Med Biol, 53: 4471

Tumor simulation workflow

PET data

painting plans

end-of-treatment FLT

Titz and Jeraj 2008, Phys Med Biol, 53: 4471

Benchmarking the model

Titz and Jeraj 2008, Phys Med Biol, 53: 4471

Tuning of the free parameters

Titz and Jeraj 2012, Phys Med Biol, 57: 6079

Adding vasculature

FLT

(Proliferation)

Update Initial vasculature Angiogenesis Vasculature map map Time t_o Time t Cu-ATSM pO₂ Update pO_2 TAF (Oxygen) (Hypoxia) map SUV pO_2

Update

proliferation

tumor volume

Simulated vasculature based on hypoxia

Adhikarla et al 2012, Phys Med Biol, 57: 6103

Simulating IHC

Input hypoxia on top of vessels and proliferating cells

Simulated hypoxia & proliferating cells overlaid on vessels

Adhikarla et al 2012, Phys Med Biol, 57: 6103

Adding therapeutic module...

Response to VEGFR TKI

How to apply this to dose painting?

Extracting "radiosensitivity" (α_{eff})

Extracting "radiosensitivity" α_{eff} values

5%, 10%, 25%, 50% and 100% redistributed D_{RX}
 D_{i.max} = 200% D_{RX} and integral dose constant

Harmon et al 2013, Phys Med Biol (in submition)

Simulation results - proliferation

How much dose to redistribute?

gain_{sF} (%

Why differences?

Why optimum?

10% Radioresistant subvolume 10% Radiosensitive subvolume

Conclusion

 Modeling bridges the gap between biology and clinical outcomes

"Top down" approach:

 Heuristically determine dose response parameters based on clinical response data

"Bottom up" approach:

- Developing the models based on basic biological principles
- Fitting the models to observed phenotypes (e.g., "radiosensitivity")

Hybrid approach:

- Where do the worlds meet?

Thanks to:

Image-guided therapy group

- Vikram Adhikarla
- Tyler Bradshaw
- Enrique Cuna
- Ngoneh Jallow
- Matt La Fontaine
- Stephanie Harmon
- Surendra Prajapati
- Urban Simoncic
- Peter Scully
- Damijan Valentinuzzi,
- Natalie Weisse
- Stephen Yip
- Former students...

Funding

 NIH, PCF, UWCCC, Pfizer, AstraZeneca, Amgen, EntreMed

- Medical Oncology/Hematology
 - Glenn Liu
 - George Wilding
 - Mark Juckett
 - Brad Kahl
 - Anne Traynor

Human Oncology

- Søren Bentzen
- Bert van der Kogel
- Paul Harari
- Mark Ritter
- Radiology
 - Scott Perlman
 - Chris Jaskowiak
- Veterinary School
 - Lisa Forrest
 - David Vail
- Medical Physics
 - Rock Mackie
 - Jerry Nickles
 - Onofre DeJesus
- Phase I and GU Office