The Promise and Pitfalls of Mechanistic Modeling in Radiation Oncology

Robert D. Stewart, Ph.D.

Associate Professor of Radiation Oncology University of Washington School of Medicine Department of Radiation Oncology 1959 NE Pacific Street Seattle, WA 98195-6043 206-598-7951 office 206-598-6218 fax trawets@uw.edu

Presented at the 2013 AAPM Conference as part of the symposium

How Do We Couple Quantitative Imaging and Models of Tumor Response to Improve Multimodality Therapy?

Date and Time: Tuesday August 6, 2013, 2:00 pm to 3:50 pm **Location:** Indianapolis, IN (Wabash Ballroom)

© University of Washington Department of Radiation Oncology

Conclusions

- Local tumor control probability (TCP) modeling is not sufficiently accurate to provide patient- and tumor-specific guidance
 - Cannot know α , α/β and the pre-treatment number of tumor cells (ρV) with sufficient accuracy
- But... relative patient- and tumor-specific guidance derived from isoeffect calculations may very well be useful and practical
 - Effects of (1) fraction size, (2) total dose, (3) particle linear energy transfer (LET), and (4) oxygen-related radiation resistance

Radiation Biology is Complex

The LQ in Radiation Therapy

Inaccurate and too simplistic (compared to known biology)

$$S(D) = \exp\left(-\alpha D - \beta G D^2\right)$$
Dose-rate and dose-fractionation effects ("dose protraction factor")
one-hit damage inter-track damage interaction

Parameters (e.g., α and β) derived from analysis of clinical outcomes are uncertain and averaged over a <u>heterogeneous</u> tumor and patient population

JF Fowler, R Chappell, M Ritter, IJROBP **50**, 1021-1031 (2001)

$$\alpha = 0.039 \text{ Gy}^{-1}$$

 $\alpha/\beta = 1.49 \text{ Gy}$
 $S = 1.159 \times 10^{-3} (37 \times 2 \text{ Gy})$

JZ Wang, M Guerrero, XA Li, IJROBP **55**, 194-203 (2003)

> $\alpha = 0.15 \text{ Gy}^{-1}$ (4X higher) $\alpha/\beta = 3.1 \text{ Gy}$ (2X higher) $S = 2.677 \times 10^{-8}$ (10⁴ smaller)

SF for a Heterogeneous Cell Population

Can't use a single (*average*) set of LQ radiation sensitivity parameters (α , α/β) to predict overall shape of doseresponse curve

 $S \neq \exp(-\alpha D - \beta G D^2)$

Five Reasons (many others possible)

- Genomic Instability
- Repair
- Repopulation
- Reassortment
- Reoxygenation

Local Tumor Control Probability (TCP)

In the Poisson TCP model, the distribution of the <u>number</u> of tumor cells that survive a treatment is modeled as

 $\mathbf{TCP} = \exp\{-\rho VS(D)\}$

product ρV = pre-treatment number of tumor cells

Typical uncertainty in ρV ? factor of 10³ to 10⁶!

Will even multi-modality imaging ever get us to a sufficiently accurate estimate of the number *and* spatial distribution of tumor cells?

CT imaging \rightarrow uncertainty in manually draw GTV and CTV contours

PET imaging \rightarrow How is SUV related to cell density?

Do tightly packed tumor cells produce a different MR signal than normal tissue?

Can single- or multi-modality imaging differentiate *cancer stem cells* from the less important cells that make up the bulk of the GTV?

Accuracy of TCP Modeling (The Pitfall...)

Even small levels of uncertainty in the biological parameters (α and α/β) have a large impact on our ability to predict the TCP for individual patients

Reproductive Death as a Surrogate for TCP?

Methods – A Multiscale Approach

Monte Carlo Damage Simulation (MCDS)

- Effects of LET and Oxygen on DNA double strand break (DSB) induction
- Microdosimetry (lineal energy, frequency-mean specific energy, CSDA range)

Repair-Misrepair-Fixation (RMF) Model

- Motivated by the breakage and reunion theory of chromosomal aberrations
- Coupled system of non-linear differential equations link DSB induction to the formation of lethal and non-lethal chromosomal aberrations
- RMR (CA Tobias) and LPL (S Curtis) models (circa -1980-1985) are special cases of the RMF
 - In the RMF, DSB induction is modeled with a compound Poisson distribution instead of a Poisson distribution (LPL and RMR models)

R.D. Stewart, V.K. Yu, A.G. Georgakilas, C. Koumenise, J.H. Park, D.J. Carlson, *Radiat. Res.* **176**, 587-602 (2011). D.J. Carlson, R.D. Stewart, V.A. Semenenko and G.A. Sandison, *Rad. Res.* **169**, 447-459 (2008)

RMF Model \rightarrow **LQ Formula**

LQ model is a low dose approximation to the RMF system of non-linear differential equations^(Carlson et al. 2008)

 θ , κ are *adjustable cell- or tissue-specific* parameters related to the biological processing of DNA damage (*independent* of LET and O₂ concentration)

 Σ is the number of DSB Gy⁻¹ Gbp⁻¹ (or per cell) – (*strong* function of LET and O₂ concentration)

 \overline{z}_F is the frequency-mean specific energy (in Gy) for the cell nucleus (*strong* function of LET but independent of O₂ concentration)

D.J. Carlson, R.D. Stewart, V.A. Semenenko and G.A. Sandison, Rad. Res. 169, 447-459 (2008)

Results-1 Human Kidney T1 Cells (aerobic)

Measured data from Barendsen circa 1960-1966

Solid line: two-parameter model fit to survival data ($\theta = 3.07 \times 10^{-2}$ Gbp/DSB, $\kappa = 7.05 \times 10^{-4}$ Gbp/DSB).

Dashed lines: <u>predicted</u> surviving fraction for higher LET radiations – estimate of θ and κ from x-ray data

MCDS used to compute Σ and \overline{z}_F from "first principles."

Results-2 Human Kidney T1 Cells (anoxic)

 $\alpha = \theta \Sigma + \kappa z_F \Sigma^2$ $\beta = \frac{\kappa}{2} \Sigma^2$

 κ and θ determined from survival data for cells exposed to *x-rays* under aerobic conditions (i.e., same as previous slide). Use MCDS to compute Σ for anoxic conditions.

Patient-Specific TCP Guidance?

Even small levels of uncertainty in the biological parameters (α and α/β) have a large impact on our ability to predict the TCP for individual patients

Is there a clever way to overcome the uncertainty?

Iso-TCP Calculations \leftrightarrow Equivalent Tumor Dose

What dose should be delivered to achieve the same level of local control as another treatment?

Reference Treatment Alternate Treatment $TCP(D_R) = TCP(D)$

 $\exp(-\rho VS(D_R)) = \exp(-\rho VS(D)) \quad Poisson \ TCP \ model$ $\rho = cell \ density \ (\# \ cm^{-3}) \qquad V = tumor \ volume \ (cm^{3})$

When comparing or ranking plans for the same patient, ρV may be considered modality and plan independent constants (same number of diseased cells regardless of treatment modality and plan).

> $S(D_R) = S(D)$ Two biological parameters (ρ and V) eliminated from modeling process (*uncertainty in \rho V doesn't matter!*)

For individual patients, iso-TCP = iso-(cell survival)

Iso-Survival Formula

Reference Treatment = Alternate Treatment

$$S(D_R) = S(D)$$

$$\exp(-\alpha D_R - \beta G D_R^{-2}) = \exp(-\alpha D - \beta G D^2)$$

$$G \text{ is the dose protraction factor}$$

$$\int \text{Take logarithm, apply quadratic formula}$$

$$D = \frac{n}{2} (\alpha / \beta) \left\{ -1 + \sqrt{1 + \frac{4D_R}{n(\alpha / \beta)}} \left(1 + \frac{D_R}{n_R(\alpha / \beta)}\right) \right\}$$

Reference Treatment ("clinical experience") $D_R = \text{total dose (Gy)}$ $n_R = \text{number fractions}$ $d_R = D_R/n_r$ (fraction size) *New (alternate) Treatment n* = desired number fractions

Uncertainty in *D* arises from uncertainties associated with α/β .

Equivalent Prostate Tumor Doses – Effects of Uncertainty in α/β

Clinical Application of the MCDS+RMF?

- MCDS+RMF is a useful, mechanistic system of models to link DSB induction to reproductive cell death *in vitro*
 - Independent testing of the MCDS against measured data for the number of DSB
 - Additional testing of the MCDS+RMF against cell survival data
 - Substantial predictive power with *two adjustable parameters* (θ and κ). Effects of *fraction size, dose rate, total dose, LET and oxygen-related radiation resistance*

Virtual Clinical Trials

- Fit θ and κ to *clinical data* for x-rays (100+ years of experience)
- Use *isoeffect calculations* to compare *relative effectiveness* of alternate plans and modalities (IMRT, IMPT, SBRT, ...)
- Use quantitative imaging to help quantify spatial variations in α and α/β and among patients (*imaging as a surrogate endpoint*) predictions becomes more individualized (and accurate?)

MV x-ray RT → Proton RT (5 cm SOBP)

M.C. Frese, V.K. Yu, R.D. Stewart, D.J. Carlson, A Mechanism-Based Approach to Predict the Relative Biological Effectiveness of Protons and Carbon Ions in Radiation Therapy, *Int. J. Radiat. Oncol. Biol. Phys.*, **83**, 442-450 (2012)

MV x-ray $RT \rightarrow {}^{12}C$ ion RT (5 cm SOBP)

M.C. Frese, V.K. Yu, R.D. Stewart, D.J. Carlson, A Mechanism-Based Approach to Predict the Relative Biological Effectiveness of Protons and Carbon Ions in Radiation Therapy, *Int. J. Radiat. Oncol. Biol. Phys.*, **83**, 442-450 (2012)

Food for Thought (Discussion)

- Is it reasonable to use a surrogate endpoint, such as reproductive cell death, to provide patient-specific guidance on the effects of one treatment <u>relative</u> to another (isoeffect calculation)?
 - Equivalent tumor doses?
 - Equivalent tolerance doses for normal tissue?
- How best might we derive patient-specific estimates of radiation sensitivity parameters (e.g., θ and κ) from multi-modality imaging before, during and/or after treatment?
 - Biology is not static

Selected Publications and Posters

- D Corwin, C Holdsworth, R Rockne, **RD Stewart**, M Phillips, KR Swanson, Optimizing Radiotherapy for Glioblastoma Using A Patient-Specific Mathematical Model. AAPM Poster SU-E-T-295
- C Kirkby, E Ghasroddashti, Y Poirier, M Tambasco, RD Stewart, Monte Carlo Simulations of Relative DNA Damage From KV CBCT Radiation *Phys. Med. Biol.* 58, 5693-5704, 2013. AAPM poster SU-E-T-495
- A.G. Georgakilas, P. O'Neill, and R.D. Stewart, Induction and Repair of Clustered DNA Lesions: What Do We Know So Far? *Radiat. Res.* 180, 100-109 (2013)
- S Streitmatter, R Stewart, G Sandison, Relative Biological Effectiveness (RBE) of Protons in Pristine Bragg Peaks. AAPM talk WE-E-108-3 Wednesday 2:00PM - 3:50PM Rm 108
- M.C. Frese, V.K. Yu, R.D. Stewart, D.J. Carlson, A Mechanism-Based Approach to Predict the Relative Biological Effectiveness of Protons and Carbon Ions in Radiation Therapy, *Int. J. Radiat. Oncol. Biol. Phys.*, 83, 442-450 (2012)
- **R.D. Stewart**, V.K. Yu, A.G. Georgakilas, C. Koumenise, J.H. Park, D.J. Carlson, Effects of Radiation Quality and Oxygen on Clustered DNA Lesions and Cell Death, *Radiat. Res.* 176, 587-602 (2011)
- D.J. Carlson, R.D. Stewart, V.A. Semenenko and G.A. Sandison, Combined use of Monte Carlo DNA damage simulations and deterministic repair models to examine putative mechanisms of cell killing. *Rad. Res.* 169, 447-459 (2008)
- Y Hsiao and R.D. Stewart, Monte Carlo Simulation of DNA Damage Induction by X-rays and Selected Radioisotopes. *Phys. Med. Biol.* 53, 233-244 (2008)

http://faculty.washington.edu/trawets/