The Promise and Pitfalls of Mechanistic Modeling in Radiation Oncology

Robert D. Stewart, Ph.D.
Associate Professor of Radiation Oncology
University of Washington School of Medicine
Department of Radiation Oncology
1959 NE Pacific Street
Seattle, WA 98195-6043
206-598-7951 office
206-598-6218 fax
trawets@uw.edu

Presented at the 2013 AAPM Conference as part of the symposium

How Do We Couple Quantitative Imaging and Models of Tumor Response to Improve Multimodality Therapy?

Date and Time: Tuesday August 6, 2013, 2:00 pm to 3:50 pm
Location: Indianapolis, IN (Wabash Ballroom)
Conclusions

- Local tumor control probability (TCP) modeling is not sufficiently accurate to provide patient- and tumor-specific guidance
 - Cannot know α, α/β and the pre-treatment number of tumor cells (ρV) with sufficient accuracy

- But… relative patient- and tumor-specific guidance derived from isoeffect calculations may very well be useful and practical
 - Effects of (1) fraction size, (2) total dose, (3) particle linear energy transfer (LET), and (4) oxygen-related radiation resistance
Radiation Biology is Complex

Absorbed Dose

Radiation

10^{-18} to 10^{-10} s

Ionization

Excitation

10^{-6} s

Chemical Repair

10^{-3} s

O_2 fixation

1 Gy ~ 1 in 10^6

Correct Repair

Enzymatic Repair

(BER, NER, NHEJ, …)

10^2 s \uparrow 10^4 s

Acute hypoxia

Chronic hypoxia

(> 1-2 h)

Incorrect or Incomplete Repair

Non-Viable

10^3 s \rightarrow 10^5 s

Inflamatory Responses

Self renewal and Differentiation

Loss of Function and Remodeling

10^6 s

10^8 s

Early Effects

(erythema, …)

Late Effects

(fibrosis, …)

2nd Cancer

10^8 s

Clonal Expansion

Neoplastic Transformation

10^7 s

Viable

Small- and large-scale mutations
(point mutations and chromosomal aberrations)

Non-Viable

Germline

Heritable Effects

10^5 s

Chronic hypoxia

(> 4-10 h?)

Local Control

10^5 s

Viable

Clonal Expansion

Neoplastic Transformation

10^7 s

Heritable Effects

Germline Instability

Somatic cells

2nd Cancer

Clonal Expansion

Neoplastic Transformation

10^8 s

Late Effects

Clonal Expansion

Neoplastic Transformation

10^7 s

Viable

Small- and large-scale mutations
(point mutations and chromosomal aberrations)
The LQ in Radiation Therapy

Inaccurate and too simplistic (compared to known biology)

\[S(D) = \exp(-\alpha D - \beta GD^2) \]

Dose-rate and dose-fractionation effects ("dose protraction factor")

one-hit damage inter-track damage interaction

Parameters (e.g., \(\alpha \) and \(\beta \)) derived from analysis of clinical outcomes are uncertain and averaged over a heterogeneous tumor and patient population

JF Fowler, R Chappell, M Ritter, IJROBP 50, 1021-1031 (2001)

\[\alpha = 0.039 \text{ Gy}^{-1} \]
\[\alpha/\beta = 1.49 \text{ Gy} \]
\[S = 1.159 \times 10^{-3} (37 \times 2 \text{ Gy}) \]

\[\alpha = 0.15 \text{ Gy}^{-1} \text{ (4X higher)} \]
\[\alpha/\beta = 3.1 \text{ Gy} \text{ (2X higher)} \]
\[S = 2.677 \times 10^{-8} \text{ (10^4 smaller)} \]
SF for a Heterogeneous Cell Population

Can’t use a single (average) set of LQ radiation sensitivity parameters (α, α/β) to predict overall shape of dose-response curve

$$S \neq \exp(-\alpha D - \beta GD^2)$$

Five Reasons (many others possible)

- Genomic Instability
- Repair
- Repopulation
- Reassortment
- Reoxygenation
Local Tumor Control Probability (TCP)

In the Poisson TCP model, the distribution of the number of tumor cells that survive a treatment is modeled as

\[TCP = \exp\{-\rho VS(D)\} \]

product \(\rho V = \) pre-treatment number of tumor cells

Typical uncertainty in \(\rho V \)? factor of \(10^3 \) to \(10^6 \)!

Will even multi-modality imaging ever get us to a sufficiently accurate estimate of the number and spatial distribution of tumor cells?

- CT imaging → uncertainty in manually draw GTV and CTV contours
- PET imaging → How is SUV related to cell density?
- Do tightly packed tumor cells produce a different MR signal than normal tissue?
- Can single- or multi-modality imaging differentiate cancer stem cells from the less important cells that make up the bulk of the GTV?
Accuracy of TCP Modeling (*The Pitfall...*)

Even small levels of uncertainty in the biological parameters (α and α/β) have a large impact on our ability to predict the TCP for individual patients.
Reproductive Death as a Surrogate for TCP?

Absorbed Dose
10^{-18} to 10^{-10} s

Radiation

Ionization
Excitation
10^{-6} s

Chemical
Repair

O_{2} fixation

1 Gy ~ 1 in 10^6

Acute hypoxia

DNA damage

Correct
Repair

10^2 s \uparrow 10^4 s

Enzymatic Repair
(BER, NER, NHEJ, …)

Incorrect or
Incomplete Repair

Chronic hypoxia
(> 1-2 h)

10^3 s 10^5 s

Non Viable

Local Tumor
Control

10^7 s (1 year) to 10^8 s (5 years)

Small- and large-scale mutations
(point mutations and chromosomal aberrations)

Chronic hypoxia
(> 4-10 h?)

10^4 s 10^5 s

Non Viable
Methods – A Multiscale Approach

- **Monte Carlo Damage Simulation (MCDS)**
 - Effects of LET and Oxygen on DNA double strand break (DSB) induction
 - Microdosimetry (lineal energy, frequency-mean specific energy, CSDA range)

- **Repair-Misrepair-Fixation (RMF) Model**
 - Motivated by the breakage and reunion theory of chromosomal aberrations
 - Coupled system of non-linear differential equations link DSB induction to the formation of lethal and non-lethal chromosomal aberrations
 - RMR (CA Tobias) and LPL (S Curtis) models (circa 1980-1985) are special cases of the RMF
 - In the RMF, DSB induction is modeled with a compound Poisson distribution instead of a Poisson distribution (LPL and RMR models)

RMF Model → LQ Formula

LQ model is a low dose approximation to the RMF system of non-linear differential equations (Carlson et al. 2008)

\[\alpha = \theta \Sigma + \kappa \bar{z}_F \Sigma^2 \]

\[\beta = \frac{\kappa}{2} \Sigma^2 \]

\[\frac{\alpha}{\beta} = \frac{2}{\Sigma} \left(\theta / \kappa \right) + 2 \bar{z}_F \]

θ, κ are adjustable cell- or tissue-specific parameters related to the biological processing of DNA damage *(independent of LET and O₂ concentration)*

Σ is the number of DSB Gy⁻¹ Gbp⁻¹ (or per cell) – *(strong function of LET and O₂ concentration)*

\(\bar{z}_F \) is the frequency-mean specific energy (in Gy) for the cell nucleus *(strong function of LET but independent of O₂ concentration)*

Results-1 Human Kidney T1 Cells (*aerobic*)

Solid line: two-parameter model fit to survival data ($\theta = 3.07 \times 10^{-2} \text{ Gbp/DSB}$, $\kappa = 7.05 \times 10^{-4} \text{ Gbp/DSB}$).

Dashed lines: *predicted* surviving fraction for higher LET radiations – estimate of θ and κ from x-ray data

MCDS used to compute Σ and \bar{z}_F from “first principles.”

\[
\alpha = \theta \Sigma + \kappa \bar{z}_F \Sigma^2 \\
\beta = \frac{\kappa}{2} \Sigma^2
\]

Measured data from Barendsen circa 1960-1966
Results-2 Human Kidney T1 Cells (anoxic)

\[\alpha = \Theta \Sigma + \kappa \sum_{F} \Sigma^2 \]

\[\beta = \frac{\kappa}{2} \sum^2 \]

\(\kappa \) and \(\theta \) determined from survival data for cells exposed to x-rays under aerobic conditions (i.e., same as previous slide). Use MCDS to compute \(\Sigma \) for anoxic conditions.
Patient-Specific TCP Guidance?

Even **small levels of uncertainty** in the biological parameters (α and α/β) have a **large impact** on our ability to predict the TCP for individual patients.

Is there a clever way to overcome the uncertainty?
Iso-TCP Calculations ↔ Equivalent Tumor Dose

What dose should be delivered to achieve the same level of local control as another treatment?

Reference Treatment Alternate Treatment

\[TCP(D_R) = TCP(D) \]

\[\exp(-\rho VS(D_R)) = \exp(-\rho VS(D)) \] Poisson TCP model

\[\rho = \text{cell density (\# cm}^{-3}) \quad V = \text{tumor volume (cm}^3) \]

When comparing or ranking plans for the same patient, \(\rho V \) may be considered **modality and plan independent constants** (same number of diseased cells regardless of treatment modality and plan).

\[S(D_R) = S(D) \] Two biological parameters (\(\rho \) and \(V \)) eliminated from modeling process (*uncertainty in \(\rho V \) doesn’t matter!*)

For individual patients, iso-TCP = iso-(cell survival)
Iso-Survival Formula

Reference Treatment = Alternate Treatment

\[S(D_R) = S(D) \]

\[\exp\left(-\alpha D_R - \beta GD_R^2\right) = \exp\left(-\alpha D - \beta GD^2\right) \]

α and β (or α/β) characterize intrinsic radiation sensitivity

G is the dose protraction factor

Take logarithm, apply quadratic formula and rearrange terms

\[D = \frac{n}{2} (\alpha / \beta) \left\{-1 + \sqrt{1 + \frac{4D_R}{n(\alpha / \beta)} \left(1 + \frac{D_R}{n_R(\alpha / \beta)}\right)}\right\} \]

Reference Treatment

("clinical experience")

- \(D_R = \) total dose (Gy)
- \(n_R = \) number fractions
- \(d_R = D_R/n_r \) (fraction size)

New (alternate) Treatment

- \(n = \) desired number fractions

Uncertainty in \(D \) arises from uncertainties associated with \(\alpha/\beta \).
Equivalent Prostate Tumor Doses – Effects of Uncertainty in α/β

10,000 values for α/β sampled from a uniform pdf (range 1 to 10 Gy)

\leftarrow 95% CI

$D_R = 79.2$ Gy (“clinical experience”)

$D_R = 60$ Gy (“clinical experience”)

Sufficiently accurate predictions are possible despite large uncertainties in α/β

$D = \frac{n}{2} (\alpha / \beta) \left\{ -1 + \sqrt{1 + \frac{4D_R}{n(\alpha / \beta)}} \left(1 + \frac{D_R}{n_R (\alpha / \beta)} \right) \right\}$
Clinical Application of the MCDS+RMF?

- **MCDS+RMF** is a useful, mechanistic system of models to link DSB induction to reproductive cell death *in vitro*
 - Independent testing of the MCDS against measured data for the number of DSB
 - Additional testing of the MCDS+RMF against cell survival data
 - Substantial predictive power with *two adjustable parameters* (θ and κ). Effects of *fraction size, dose rate, total dose, LET* and oxygen-related radiation resistance

- **Virtual Clinical Trials**
 - Fit θ and κ to *clinical data* for x-rays (100+ years of experience)
 - Use *isoeffect calculations* to compare *relative effectiveness* of alternate plans and modalities (IMRT, IMPT, SBRT, …)
 - Use quantitative imaging to help quantify spatial variations in α and α/β and among patients (*imaging as a surrogate endpoint*) – predictions becomes more individualized (and accurate?)
MV x-ray RT → Proton RT (5 cm SOBP)

MV x-ray RT → 12C ion RT (5 cm SOBP)

Food for Thought (Discussion)

- Is it reasonable to use a surrogate endpoint, such as reproductive cell death, to provide patient-specific guidance on the effects of one treatment relative to another (isoeffect calculation)?
 - Equivalent tumor doses?
 - Equivalent tolerance doses for normal tissue?

- How best might we derive patient-specific estimates of radiation sensitivity parameters (e.g., θ and κ) from multi-modality imaging before, during and/or after treatment?
 - Biology is not static
Selected Publications and Posters

- S Streitmatter, **R Stewart**, G Sandison, Relative Biological Effectiveness (RBE) of Protons in Pristine Bragg Peaks. AAPM talk WE-E-108-3 Wednesday 2:00PM - 3:50PM Rm 108