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Conclusions 

 Local tumor control probability (TCP) modeling 

is not sufficiently accurate to provide patient- and 

tumor-specific guidance 

• Cannot know a, a/b and the pre-treatment number of tumor cells 

(rV) with sufficient accuracy 

 But… relative patient- and tumor-specific 

guidance derived from isoeffect calculations may 

very well be useful and practical 

• Effects of (1) fraction size, (2) total dose, (3) particle linear energy 

transfer (LET), and (4) oxygen-related radiation resistance 



© University of Washington Department of Radiation Oncology Slide 3 

106 s 

Radiation Biology is Complex 

Radiation 

Ionization 

Excitation 

DNA damage 

10-6 s 

10-18 to 10-10 s 

Chemical 

Repair 10-3 s 

Enzymatic Repair 
(BER, NER, NHEJ, …) 

Correct 

Repair 

102 s 

Incorrect or  

Incomplete Repair 

Non-Viable 

103 s 105 s 

Small- and large-scale mutations 
(point mutations and chromosomal aberrations) 

104 s 105 s 

104 s 

1 Gy ~ 1 in 106 

O2  fixation 

Neoplastic  

Transformation 
Somatic 

cells 

Clonal 

Expansion 

107 s 

2nd Cancer 

108 s 

Heritable 

Effects Germline 

105 s 

Loss of Function 

and Remodeling 

Angiogenesis and 

Vasculogenesis  

Self renewal and 

Differentiation 

Inflamatory 

Responses 

Early Effects 

(erythema, …) 

108 s 

Late Effects 

(fibrosis, …) 

Absorbed Dose 

Chronic 

hypoxia 

(> 1-2 h) 

Chronic 

hypoxia 

(> 4-10 h?) 

Acute 

hypoxia 

Viable 

Local Control 



© University of Washington Department of Radiation Oncology Slide 4 

 2( ) expS D D GDa b  

The LQ in Radiation Therapy 

Inaccurate and too simplistic (compared to known biology) 

Parameters (e.g., a and b) derived from analysis of clinical 

outcomes are uncertain and averaged over a heterogeneous 

tumor and patient population 

JF Fowler, R Chappell, M Ritter, 

IJROBP 50, 1021-1031 (2001) 

a = 0.039 Gy-1 

a/b = 1.49 Gy 

S = 1.159 × 10-3 (37 × 2 Gy) 

JZ Wang, M Guerrero, XA Li, 

IJROBP 55, 194-203 (2003) 

a = 0.15 Gy-1 

a/b = 3.1 Gy 

S = 2.677 × 10-8 

(4X higher) 

(2X higher) 

(104 smaller) 

one-hit damage inter-track damage interaction 

Dose-rate and dose-fractionation 

effects (“dose protraction factor”) 
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SF for a Heterogeneous Cell Population 
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 Genomic Instability 

 Repair 

 Repopulation 

 Reassortment 

 Reoxygenation 

Five Reasons (many others possible) 
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Local Tumor Control Probability (TCP) 

In the Poisson TCP model, the distribution of the number of tumor 

cells that survive a treatment is modeled as 

product rV = pre-treatment number of tumor cells 

Typical uncertainty in rV? factor of 103 to 106! 

TCP = exp{-rVS(D)} 

Can single- or multi-modality imaging differentiate cancer stem cells from the 

less important cells that make up the bulk of the GTV? 

Will even multi-modality imaging ever get us to a sufficiently accurate 

estimate of the number and spatial distribution of tumor cells? 

CT imaging  uncertainty in manually draw GTV and CTV contours 

PET imaging  How is SUV related to cell density? 

Do tightly packed tumor cells produce a different MR signal than normal tissue? 
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Accuracy of TCP Modeling (The Pitfall…) 
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Even small levels of uncertainty in the biological parameters (a and a/b) have  

a large impact on our ability to predict the TCP for individual patients 

Perfect knowledge of rV 
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Reproductive Death as a Surrogate for TCP? 
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Methods – A Multiscale Approach 

 Monte Carlo Damage Simulation (MCDS) 

• Effects of LET and Oxygen on DNA double strand break (DSB) induction 

• Microdosimetry (lineal energy, frequency-mean specific energy, CSDA 

range) 

 Repair-Misrepair-Fixation (RMF) Model 

• Motivated by the breakage and reunion theory of chromosomal aberrations 

• Coupled system of non-linear differential equations link DSB induction to 

the formation of lethal and non-lethal chromosomal aberrations 

• RMR (CA Tobias) and LPL (S Curtis) models (circa -1980-1985) are 

special cases of the RMF 

 In the RMF, DSB induction is modeled with a compound Poisson distribution instead 

of a Poisson distribution (LPL and RMR models) 

R.D. Stewart, V.K. Yu, A.G. Georgakilas, C. Koumenise, J.H. Park, D.J. Carlson, Radiat. Res. 176, 587-602 (2011). D.J. Carlson, 

R.D. Stewart, V.A. Semenenko and G.A. Sandison, Rad. Res. 169, 447-459 (2008) 
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RMF Model  LQ Formula 

LQ model is a low dose approximation to the RMF system 

of non-linear differential equations(Carlson et al. 2008) 

2

Fza     

D.J. Carlson, R.D. Stewart, V.A. Semenenko and G.A. Sandison, Rad. Res. 169, 447-459 (2008) 

2

2


b  

2
( / ) 2 Fz

a
 

b
 



,  are adjustable cell- or tissue-specific parameters related to the biological 

processing of DNA damage (independent of LET and O2 concentration) 

 is the number of DSB Gy-1 Gbp-1 (or per cell) – (strong function of LET and O2 

concentration) 

     is the frequency-mean specific energy (in Gy) for the cell nucleus (strong 

function of LET but independent of O2 concentration) 
Fz

Unrepairable and 
     misrepaired damage 

Intra-track  chromsomal 
aberrations 

Inter-track 
aberrations Cell sensitivity to changes in  

fraction  size and dose rate 
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Dashed lines: predicted surviving fraction 

for higher LET radiations – estimate of  

and  from x-ray data 

Results-1 Human Kidney T1 Cells (aerobic) 

Measured data from Barendsen circa 1960-1966 
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Solid line: two-parameter model fit to 

survival data (  3.07102 Gbp/DSB,  

  7.05104 Gbp/DSB). 

2

Fza      2

2


b  

FzMCDS used to compute  and       from 

“first principles.” 
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Results-2 Human Kidney T1 Cells (anoxic) 
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2

Fza     

2

2


b  

 and  determined from survival data for cells exposed to x-rays 

under aerobic conditions (i.e., same as previous slide).  Use MCDS 

to compute  for anoxic conditions.  
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Patient-Specific TCP Guidance? 
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a = 0.15 Gy-1, a/b = 3.1 Gy 

Even small levels of uncertainty in the 

biological parameters (a and a/b) 

have  a large impact on our ability to 

predict the TCP for individual 

patients 

Is there a clever way to 

overcome the uncertainty? 
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Iso-TCP Calculations  Equivalent Tumor Dose 

What dose should be delivered to achieve the same level of 

local control as another treatment? 

( ) ( )RTCP D TCP D

Reference Treatment Alternate Treatment 

   exp ( ) exp ( )RVS D VS Dr r   Poisson TCP model 

r = cell density (# cm-3) V = tumor volume (cm3) 

( ) ( )RS D S D

When comparing or ranking plans for the same patient, rV may be 

considered modality and plan independent constants (same number of diseased 

cells regardless of treatment modality and plan). 

Two biological parameters (r and V) eliminated from 

modeling process (uncertainty in rV doesn’t matter!) 

For individual patients, iso-TCP = iso-(cell survival) 
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Iso-Survival Formula 

   2 2

( ) ( )

exp exp

R

R R

S D S D

D GD D GDa b a b



    

Reference Treatment = Alternate Treatment 
a and b (or a/b) characterize 

intrinsic radiation sensitivity 

G is the dose protraction factor 

Take logarithm, apply quadratic formula 

and rearrange terms 

4
( / ) 1 1 1

2 ( / ) ( / )

R R

R

D D
D

n

n n
a b

a b a b

   
      

   

Reference Treatment 

(“clinical experience”) 

DR = total dose (Gy) 

nR = number fractions 

dR = DR/nr (fraction size) 

Uncertainty in D arises from  

uncertainties associated with a/b. 

New (alternate) Treatment 

n = desired number fractions 
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Equivalent Prostate Tumor Doses – Effects of 
Uncertainty in a/b 

44 x 1.8 Gy 

20 x 3 Gy 

DR = 79.2 Gy (“clinical experience”) DR = 60 Gy (“clinical experience”) 

95% CI 

10,000 values for a/b sampled from 

a uniform pdf (range 1 to 10 Gy) 

Sufficiently accurate 

predictions are possible despite 

large uncertainties in a/b 
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Clinical Application of the MCDS+RMF? 

 MCDS+RMF is a useful, mechanistic system of models to 

link DSB induction to reproductive cell death in vitro 
• Independent testing of the MCDS against measured data for the number of DSB 

• Additional testing of the MCDS+RMF against cell survival data 

• Substantial predictive power with two adjustable parameters ( and ). Effects of 

fraction size, dose rate, total dose, LET and oxygen-related radiation resistance 

 Virtual Clinical Trials 
• Fit  and  to clinical data for x-rays (100+ years of experience) 

• Use isoeffect calculations to compare relative effectiveness of alternate plans and 

modalities (IMRT, IMPT, SBRT, …) 

• Use quantitative imaging to help quantify spatial variations in a and a/b and 

among patients (imaging as a surrogate endpoint) – predictions becomes more 

individualized (and accurate?) 
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MV x-ray RT  Proton RT (5 cm SOBP) 

M.C. Frese, V.K. Yu, R.D. Stewart, D.J. Carlson,  A Mechanism-Based Approach to Predict  the Relative Biological Effectiveness of 

Protons and Carbon Ions in Radiation Therapy, Int. J. Radiat. Oncol. Biol. Phys., 83, 442-450 (2012) 
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MV x-ray RT  12C ion RT (5 cm SOBP) 

M.C. Frese, V.K. Yu, R.D. Stewart, D.J. Carlson,  A Mechanism-Based Approach to Predict  the Relative Biological Effectiveness of 

Protons and Carbon Ions in Radiation Therapy, Int. J. Radiat. Oncol. Biol. Phys., 83, 442-450 (2012) 
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Food for Thought (Discussion) 

 Is it reasonable to use a surrogate endpoint, such as 

reproductive cell death, to provide patient-specific 

guidance on the effects of one treatment relative to 

another (isoeffect calculation)? 
• Equivalent tumor doses? 

• Equivalent tolerance doses for normal tissue? 

 How best might we derive patient-specific estimates of 

radiation sensitivity parameters (e.g.,  and ) from 

multi-modality imaging before, during and/or after 

treatment? 
• Biology is not static 
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