

# MRI for Radiation Therapy Planning (2)

Yue Cao, Ph.D. Departments of Radiation Oncology, Radiology and Biomedical Engineering University of Michigan

Panel: J. Balter, E. Paulson, R Cormack



#### **Radiation Oncology**

- James Balter, Ph.D.
- Avraham Eisbruch, MD
- Mary Feng, M.D.
- Felix Feng, MD
- Theodore S. Lawrence, MD, Ph.D
- Randall Ten Haken, Ph.D.
- Christina I. Tsien, MD
- Hesheng Wang, Ph.D.
- Shu-hui Hsu, Ph.D.
- Ke Huang, Ph.D.

#### **Biomedical Engineering**

Doug Noll, Ph.D.

#### **MRI simulation staff**

Jeremy French

#### **Siemens Medical Systems**

• Steven Shea, Ph.D.

#### **NIH grants**

- RO1 NS064973 (Cao)
- RO1 CA132834 (Cao)
- RO1 EB016079 (Balter)





# Superior soft tissue Tumor and OAR delineation



# MRI for RT Planning: why

- Superior multi-soft tissue contrasts
- Physiological and metabolic imaging
- Tumor and OAR delineation
- Boost target (active tumor) definition



Wang, AAPM 2013



- Target and/or Boost volume definition
- OAR delineation and organ function assessment
- Treatment Planning
- Motion management
- On-board Tx verification
- Early Tx response assessment
  - to image active residual tumor
  - to assess normal tissue/organ function reserve 5



- MRI scanner is designed for diagnosis
- Challenges for use as a RT simulator:
  - System-level geometric accuracy
  - Patient-induced spatial distortion
  - Electron density (synthetic CT)
  - IGRT support
  - RF coil configuration optimization
  - Sequence optimization for RT planning
  - Etc.



- System-level geometric characterization
  - Specs requirement in RFP
  - Site characterization during acceptance
  - Establish system QA procedures
- Patient-level characterization, correction and QA/QC
  - Patient by patient characterization
  - Patient-specific QA/QC (cannot be done by phantoms)
  - Distortion correction procedure

# Why does a patient induce geometric distortion?

### Tissue magnetic susceptibility

|                                              | air   | water  | blood                   | bone     | fat  | Au  |  |  |
|----------------------------------------------|-------|--------|-------------------------|----------|------|-----|--|--|
| χ (10 <sup>-6</sup><br>cm <sup>3</sup> /mol) | 0.36* | -8.9** | -8.89.1*<br>(02:55-96%) | -11.3*** | -8.4 | -28 |  |  |

Inhomogeneous Δχ → ΔB<sub>0</sub>
 Inhomogeneous human anatomy

 Air-tissue/blood/bone, bone-tissue/fat
 Metal (paramagnetic or diamagnetic)

 High external field → large ΔB<sub>0</sub>

\* Vignaud, MRM 2005; \*\*CRC Handbook 1991;\*\*\*Hopkins, MRM 1997

# Inhomogeneous anatomy





### anatomy



Wang, Balter, Cao PMB 2013



- Conventional K-space acquisition
- 2D acquisition
  - Frequency encoding and slice selection
- 3D acquisition
  - FE:  $\omega_x = \gamma(xG_x)$   $\rightarrow$   $\omega_x' = \gamma(\Delta B_0(x) + xGx)$

-> Shift 
$$\Delta x = \frac{\Delta B_0}{BW_f} \Delta V_f$$

Pixel size in mm/pixel

Frequency Encoding G bandwidth in Hz/pixel

– Mapping individual patient  $\Delta B_0$ 



Frequency encoding

### Patient-level Distortion University of Michigan Medical School





3d T1-weighted images (mprage)with BWf=180 Hz/pixel



Wang, Balter, Cao PMB 2013



## Distortion from air boundary (n=19)









Wang, Balter, Cao PMB 2013







### Uniform water phantom

- $\Delta B_0$  map (0 min) vs  $\Delta B_0$  map (15 min) after moving a water phantom into the scanner bore
- Human subject
  - Does  $\Delta B_0$  map change over scanning time?
  - If yes, what does it impact on geometric accuracy of the images?

## How stable is the field map of the head at 3T?



- ▲B<sub>0</sub> maps acquired twice at the beginning and end of the imaging session (~40 min a part)
- Systematic shifts (<0.33 ppm or 0.3 mm) were observed in 16 of 17 patients
- Systematic shift is small and does not cause local distortion

# **Chemical Shift: water and fat**

- Difference between resonance frequencies of water and fat
  - 3.5 ppm
  - 1.5T: 224 Hz; 3T: 448 Hz
- Mismapping in frequency encoding and slice selection directions
  - At 3T,
  - if  $BW_f = 200Hx/1mm \rightarrow 2.24 mm$
  - if  $BW_f = 800Hx/1mm \rightarrow 0.56 mm$

#### Spin echo sequence







Gradient echo: dark boundary due to Water and fat signals out of phase



TEs for Water and fat out- and in-phase at 3T
In-phase: N x 2.3 ms
Out-phase: N x 3.45 ms





# Iniversity of Michigan Shift correction of fat to water



Fat rotates 431Hz slower than water at our scanner Frequency encoding direction bandwidth: 405 Hz/pixel, 1.17 mm/pixel

# How can you get electron Medical School How Can you get electron Construction

- MR-CT alignment  $\rightarrow$  conventional approach
- Manual segmentation and density assignment (Chen et al in 1990s)
- Atlas-based density insertion → registration of individual MRI to atlas of CT/MRI (e.g., Balter ICCR 2010)
- Utilization of multi-contrast MRI, including ultrashort TE (TE<0.1 ms) images, to synthesize "CT" and "DRR"</li>
  - Subtraction of images acquired by UTE and non-UTE
  - Tissue pattern learning, classification and/or segmentation and assigning each classified/segmented voxel "density" properties
- Hybrid approach

## What are sources of MR signals from cortical bone?

### Proton spins from water

- Free water in microscopic pores long T2\*/T2 (T2\*: 2-4 ms) pore volume fraction (a few percent)
- Bound water in the extracellular matrix short T2\* (T2\*: 0.379-0.191 ms; T1: 186-102 ms)
- Ca hydroxyapatite T2\*: 0.01-0.02 ms
- Fat from bone marrow



Spectral analysis of multiple T\*2/T2s in femurs (Nyman, Bone 2008)

# Can you differentiate air from bone without UTE images?

#### Cortical bone in the head By Hsu, Balter, Cao AAPM 2012









### Tested MRI

- UTEI, TE=0.06 ms
- T1WI: TE=2.5 ms
- $2^{nd}$  T1WI: TE=4.5 ms
- T2WI: TE= 80-120 ms
- ROC analysis
- CT as truth
  - Air: HU <-400
  - Bone: HU > 200



Hsu, Balter, Cao AAPM 2013 <sub>25</sub>

# Synthetic CT: Medical School School School

MRI signals provide various sources of contrast

- By combining the information from multiple scans of the same tissue, we classify different tissue types
- Assigning properties to these classified tissues permits generation of attenuation maps, as well as synthetic CT scans





# UM protocol and coil setup

- 3T Skyra
- Protocol
  - Localizer
  - TOF white vessel
  - T1W-MPRAGE
  - UTE (TE=0.06 ms)
  - T2W-SPACE
  - Dixon (fat and water)
  - Total time 12.5 min

Coils

- Body18 + large flexible coil
- indexed flat table top insert
- Patient in Tx position and w mask











Synthetic CT Threshold: 100 Sensitivity: 75% Specificity: 98%



## Intensities in bone: Wedical School Synthetic vs actual CT



### 9-field focal brain treatment plan University of Michigan

Medical School



| Fields | Dose Prescription |           | Field Alignments | Plur   | a Objectives | Optimizatio | n Objectives         | Dose St          | atistics Ca        | (culation) | Models          | Plan Sum   | 6          |                 |      |            |        |        |        |             |     |                |
|--------|-------------------|-----------|------------------|--------|--------------|-------------|----------------------|------------------|--------------------|------------|-----------------|------------|------------|-----------------|------|------------|--------|--------|--------|-------------|-----|----------------|
| Group  | Field ID          | Technique | Machine/Energy   | MLC    | Field Weight | Scale       | Gantry Rtn.<br>[deg] | Col Rtn<br>Idegi | Cauch Rtn<br>[deg] | Wedge      | Field X<br>[cm] | X1<br>[cm] | X2<br>(cm) | Field Y<br>[cm] | (cm) | V2<br>(ont | X.[cm] | Y (cm) | Z (cm) | SSD<br>[cm] | MU. | Awt. D<br>IGy1 |
| 7      | Field 1           | STATIC-I  | UM-EX1 - 6X      | Static | 0.111        | Varian IEC  | 160.0                | 0.0              | 0.0                | None       | 4.9             | +2.4       | +2.5       | 3.9             | +2.2 | +1.7       | 0.51   | -5.52  | -6.06  | 89.0        | 315 | 3.725          |
| ন      | Field 2           | STATIC-I  | UM-EX1 - 6X      | Static | 0.111        | Varian IEC  | 130.0                | 0.0              | 0.0                | None       | 4.8             | +2.4       | +2.5       | 3.9             | +2.2 | +1.7       | 0.51   | -5.52  | -6.06  | 90.8        | 287 | 3.245          |
| 1      | Field 3           | STATIC-I  | UM-EX1 - 6X      | Static | 0.111        | Varian IEC  | 100.0                | 0.0              | 0.0                | None       | 4.8             | +2.4       | +2.4       | 3.9             | +2.2 | +1.7       | 0.51   | -5.52  | -6.06  | 92.8        | 263 | 2.835          |
| P      | Field 4           | STATIC-I  | UM-EX1 - 6X      | Static | 0 111        | Varian IEC  | 70.0                 | 0.0              | 0.0                | None       | 4.7             | +2.4       | +2.3       | 3.9             | +2.2 | +1.7       | 0.51   | -5.52  | -6.06  | 93.2        | 260 | 2.773          |
| ম      | Field 5           | STATIC-I  | UM-EX1 - 6X      | Static | 0.111        | Varian IEC  | 140.0                | 0.0              | 45.0               | None       | 4.9             | +2,2       | +2.7       | 3.9             | +2.2 | +1.7       | 0.51   | -5.52  | -6.06  | 89.4        | 309 | 3.590          |
| 2      | Field 8           | STATIC-I  | UM-EX1 - 6X      | Static | 0.111        | Varian IEC  | 90.0                 | 0.0              | 90.0               | None       | 4.7             | +2.4       | +2.3       | 4.4             | +2.2 | +2.2       | 0.51   | -5.62  | -6.06  | 90.2        | 294 | 3.371          |
| ন      | Field 7           | STATIC-I  | UM-EX1 - 6X      | Static | 0.111        | Varian IEC  | 30.0                 | 0.0              | 45.0               | None       | 4.2             | +2.2       | +2.0       | 4.4             | +2.2 | +2.2       | 0.51   | -5.52  | -6.06  | 91.5        | 280 | 3 090          |
| 2      | Field 8           | STATIC-I  | UM-EX1 - 6X      | Static | 0.111        | Varian IEC  | 120.0                | 0.0              | 90.0               | None       | 4.8             | +2.3       | +2.5       | 4.4             | +2.2 | +2.2       | 0.51   | -5.52  | -6.06  | 89.4        | 304 | 3.552          |
| F      | Field 9           | STATIC-I  | UM-EX1 - 6X      | Static | 0.111        | Varian IEC  | 50.0                 | 0.0              | 0.0                | None       | 4.4             | +2.2       | +2.2       | 3.9             | +2.2 | +1.7       | 0.51   | -5.52  | -6.06  | 92.8        | 263 | 2.820          |

### **9-field plan:** DVHs from same fields and MUs calculated on CT and MRCT



### Relationship between Intensities of CT and MRI Iniversity of Michigan Medical School Kelationship 2011)



### Inputs

- Dual echo UTE sequence
  - (TEs=0.07/3.75 ms)
- T2 weighted images
- 4 subjects
- Fit them by a GMR model
- Apply to a MRI dataset without CT to create "CT"







#### Johansson 2011

## How to evaluate synthesized Medical School \*\* CT" or "DRR"

- Voxel-to-voxel comparison of intensities between "CT" and CT (or "DRR" to DRR
- Considering attempted uses
  - Radiation dose plans created from "CT" vs CT
  - Image guidance consequences using "DRR" vs DRR
- Other criteria?



### Organ motion

Presence of other materials

- Iron, large fat fractions, cartilage,...
- Large B1 field inhomogeneity
- Variable air pockets
- UTE sequence





# Geometric phantom: System level characterization



# X: 29 Columns; Y: 21 rows; Z: 9 Sheets Center to center 16 mm



### To determine the center of all globes



Isocenter plane



### Z = -59.3 mm

### Z = 60.7 mm







fat UTE1 UTE2





300 (green), 700 (yellow), 1000 (pink), and 1300 (blue) Hounsfield Units





## Digitally reconstructed Radiographs



CT

MRCT











### **First volunteer MRCT** (UTE, no CT)



## Targeting active tumor based upon physiological response



Standard course 55 Gy (5 Fx) NTCP:10% Adaptive course 80 Gy (5 Fx) NTCP: 10%

M. Matuszak, M. Feng, 2013

# Biological Sample (no UTE)



CT



### MRCT