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MRI for RT Planning: why 

 Superior soft tissue 
contrast 

 

 

 Tumor and OAR 
delineation 
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Post-Gd T1W FLAIR  



MRI for RT Planning: why 

 Superior multi-soft 
tissue contrasts 

 Physiological and 
metabolic imaging 

 

 Tumor and OAR 
delineation 

 Boost target (active 
tumor) definition 
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Quantitative Abnormal Arterial Perfusion 

Wang, AAPM 2013 



Integration of MRI in RT 

 Target and/or Boost volume definition 

 OAR delineation and organ function 
assessment 

 Treatment Planning 

 Motion management 

 On-board Tx verification 

 Early Tx response assessment  

– to image active residual tumor 

– to assess normal tissue/organ function reserve 5 



MRI Simulator 

 MRI scanner is designed for diagnosis 

 Challenges for use as a RT simulator: 

– System-level geometric accuracy 

– Patient-induced spatial distortion  

– Electron density (synthetic CT) 

– IGRT support 

– RF coil configuration optimization  

– Sequence optimization for RT planning 

– Etc. 
6 



Geometric Accuracy  

 System-level geometric characterization  

– Specs requirement in RFP 

– Site characterization during acceptance 

– Establish system QA procedures 

 Patient-level characterization, correction 
and QA/QC 

– Patient by patient characterization 

– Patient-specific QA/QC (cannot be done by 
phantoms) 

– Distortion correction procedure 
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Why does a patient induce  

geometric distortion? 

 Tissue magnetic susceptibility 

 

 

 Inhomogeneous Dc  DB0 

 Inhomogeneous human anatomy  

– Air-tissue/blood/bone, bone-tissue/fat 

– Metal (paramagnetic or diamagnetic) 

 High external field  large DB0 

 8 

air water blood bone fat Au 

c (10-6 

cm3/mol) 

0.36* -8.9** -8.8 - -9.1* 
(O2:55-96%) 

-11.3*** -8.4 -28 

* Vignaud, MRM 2005; **CRC Handbook 1991;***Hopkins, MRM 1997 



Inhomogeneous anatomy 
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DB0 anatomy 

Wang, Balter, Cao PMB 2013 



Geometric distortion 

 Conventional K-space acquisition 

 2D acquisition  

– Frequency encoding and slice selection 

 3D acquisition 

– FE:  

– Shift ∆𝑥 =
∆𝐵0

𝐵𝑊𝑓
∆𝑉𝑥 

 

 

– Mapping individual patient DB0 
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Frequency Encoding G 

bandwidth in Hz/pixel 

Pixel size in mm/pixel  

wx=g(xGx) 

K Space 

Frequency encoding 
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wx'=g(DB0(x)+xGx) 



Patient-level Distortion 

Correction and QA 
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Acquire wrapped  

phase different maps  

by 2 gradient 

echoes 

Unwrap and 

convert to 

the field map 

Correct 
gradient non-

linearity  

Assess whether a 

 distortion correction  

is needed for images 

Correct distortion 

Or stop 

-4

-2

0

2

4

6

8

10

12

0 2 4 6 8

fi
e

ld
  (

p
p

m
 o

r 
H

z)

X (mm)
-4

-3

-2

-1

0

1

2

3

4

0 2 4 6 8

P
h

as
e

 (
ra

d
ia

n
)

X (mm)



Distortion map 
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1mm 

-2mm 

Wang, Balter, Cao PMB 2013 

3d T1-weighted images 

(mprage)with  

BWf=180 Hz/pixel 



Distortion from air boundary 

(n=19) 
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Distortion from metal 
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Perturbation in DB0 map due 

to object movement  

 Uniform water phantom 

• DB0 map (0 min) vs DB0 map (15 min) 
after moving a water phantom into the 
scanner bore 

 Human subject 

• Does DB0 map change over scanning 
time? 

• If yes, what does it impact on geometric 
accuracy of the images? 

15 



How stable is the field map of 

the head at 3T? 

 DB0 maps acquired twice at the beginning and end 
of the imaging session (~40 min a part) 

 Systematic shifts (<0.33 ppm or 0.3 mm) were 
observed in 16 of 17 patients 

 Systematic shift is small and does not cause local 
distortion 
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Chemical Shift: water and fat 

 Difference between resonance 
frequencies of water and fat 

– 3.5 ppm 

– 1.5T: 224 Hz; 3T: 448 Hz 

 Mismapping in frequency 
encoding and slice selection 
directions 

At 3T,  

if BWf=200Hx/1mm 2.24 mm 

if BWf=800Hx/1mm 0.56 mm 
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Spin echo sequence 



Chemical Shift of Water and 

Fat 
 TEs for Water and fat 

out- and in-phase at 3T 

 In-phase: N x 2.3 ms 

 Out-phase: N x 3.45 ms 

18 

Gradient echo: dark boundary due to 

Water and fat signals out of phase 



Dixon Method to separate 

water and fat signals 

19 



Shift correction of fat to water 
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No Corrected 
Corrected 

Fat rotates 431Hz slower than water at our scanner 

Frequency encoding direction bandwidth: 405 Hz/pixel, 1.17 mm/pixel 



How can you get electron 

density from MRI? 
 MR-CT alignment   conventional approach 

 

 Manual segmentation and density assignment (Chen et al in 
1990s) 

 

 Atlas-based density insertion  registration of individual MRI 
to atlas of CT/MRI (e.g., Balter ICCR 2010) 

 

 Utilization of multi-contrast MRI, including ultrashort TE 
(TE<0.1 ms) images, to synthesize “CT” and “DRR” 
– Subtraction of images acquired by UTE and non-UTE 

– Tissue pattern learning, classification and/or segmentation and assigning each 
classified/segmented voxel “density” properties  

 Hybrid approach 
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What are sources of MR 

signals from cortical bone? 
 Proton spins from water 

– Free water in microscopic pores  
long T2*/T2 (T2*: 2-4 ms)     

    pore volume fraction (a few percent) 

– Bound water in the extracellular 
matrix                                     
short T2* (T2*: 0.379-0.191 ms; 
T1: 186-102 ms) 

 Ca hydroxyapatite 

    T2*: 0.01-0.02 ms 

 Fat from bone marrow 

22 Nyman 2008, Kokabi 2011 

Spectral analysis of multiple  

T*2/T2s in femurs (Nyman, Bone 2008) 



Can you differentiate air from 

bone without UTE images? 
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Cortical bone in the head  

By Hsu, Balter, Cao AAPM 2012 
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UTE image 
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TE=0.06 ms TE=4.46 ms 

subtraction R2* 

TE=4.46 ms 

TE=0.06 ms 

Signal ratio 

3:1 

Fbound/Ffree -> 2:1 



Separate air from bone by MRI 

 Tested MRI  

– UTEI, TE=0.06 ms 

– T1WI: TE=2.5 ms 

– 2nd T1WI: TE=4.5 ms 

– T2WI: TE= 80-120 ms 

 ROC analysis 

 CT as truth 

– Air: HU <-400 

– Bone: HU > 200 
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Synthetic CT: 

Multispectral modeling 

 MRI signals provide various sources of contrast 

 

 By combining the information from multiple scans 
of the same tissue, we classify different tissue 
types 

 

 Assigning properties to these classified tissues 
permits generation of attenuation maps, as well as 
synthetic CT scans 

 
26 



Synthetic CT process 

27 

 

 

 

 

 

 

Image series 1 

Image series 2 

Image series 3 

Image series… 

Image series N 

FCM 

classifier 

Probability image in 

class 1 

Probability image in 

class 2 

Probability image in 

class … 

Probability image in 

class c 

Class property 

assignment 

Synthetic 

CT image 

(MRCT)  

Image pre-

processing 



UM protocol and coil setup 

 3T Skyra 

 Protocol 

– Localizer 

– TOF white vessel 

– T1W-MPRAGE 

– UTE (TE=0.06 ms) 

– T2W-SPACE 

– Dixon (fat and 
water) 

– Total time 12.5 min 

 

 Coils 

– Body18 + large flexible coil 

 indexed flat table top 
insert  

 Patient in Tx position and 
w mask 

28 



Input MRI 
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   T1WI                   T2WI                    UTEI 

    Fat                      water                 Vessel 



Synthetic CT and DRR 

30 

CT 

Synthetic CT 

Threshold: 100 

Sensitivity: 75% 

Specificity: 98% 



Intensities in bone:  

Synthetic vs actual CT  
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9-field focal brain treatment plan 

32 



9-field plan: DVHs from same fields 

and MUs calculated on CT and MRCT 
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Relationship between Intensities of CT and MRI 

(Johansson 2011) 

 
 Inputs 

– Dual echo UTE 
sequence 
(TEs=0.07/3.75 ms) 

– T2 weighted images 

– 4 subjects 

 Fit them by a GMR 
model 

 Apply to a MRI 
dataset without CT 
to create “CT” 
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GMR Model 

35 

CT Synthesized CT 

Johansson 2011 



How to evaluate synthesized 

“CT” or “DRR” 

 Voxel-to-voxel comparison of 
intensities between “CT” and CT (or 
“DRR” to DRR 

 Considering attempted uses 

– Radiation dose plans created from “CT” 
vs CT 

– Image guidance consequences using 
“DRR” vs DRR 

 Other criteria? 
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Challenges outside of head 

 Organ motion  

 Presence of other materials 

– Iron, large fat fractions, cartilage,… 

 Large B1 field inhomogeneity 

 Variable air pockets 

 UTE sequence 

37 
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Geometric phantom: 

System level characterization 
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 X: 29 Columns; Y: 21 rows; Z: 9 Sheets 

 Center to center 16 mm  

Z 
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Automated Search Algorithm 

 To determine the center of all globes 
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Isocenter 

plane 



Off Isocenter 
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Z = -59.3 mm Z = 60.7 mm 



Animal MRI Scans 
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T1W T2W Water 

fat UTE1 UTE2 



CT 

43 

 300 (green), 700 (yellow), 1000 (pink), and 1300 (blue)  

Hounsfield Units 



MRCT vs CT 
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Digitally reconstructed 

Radiographs 
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                  CT                                                                   MRCT  



MRI 
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First volunteer MRCT  

(UTE, no CT) 



Targeting active tumor based 

upon physiological response 
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Standard course 

55 Gy (5 Fx) 

NTCP:10% 

Adaptive  course 

80 Gy (5 Fx) 

NTCP: 10% 

M. Matuszak, M. Feng, 2013 

PTV Boost target 



Biological Sample (no UTE) 

50 
CT MRCT 


