MRI Guided Brachytherapy

Robert A. Cormack Dana-Farber Cancer Institute & Brigham and Women's Hospital

Acknowledgements

- No financial conflicts of interest
- I may mention use of devices in ways that are not FDA approved
- Collaboration
 - Radiology
 - Clare Tempany
 - Fiona Fennessy
 - Kemal Tuncali
 - Ehud Schmidt
 - Dan Kacher
 - Andriy Federov

Collaboration

- Rad Onc
 - Akila Viswanathan
 - Anthony D'Amico
 - Paul Nguyen
 - Antonio Damato
 - Desmond O'Farrell
 - Mandar Bhagwat
 - Emily Neubauer
 - Ivan Buzurovic
 - Wei Wang

Learning Objectives

- Highlight rationale for MR brachytherapy
- Discuss technical challenges
 - MR based planning
 - MR guided implants
- Indicate current developments & efforts

Outline

- Subjects to be ignored
- Benefits of MR for brachytherapy
- MRI Based Planning
 - Permanent implants
 - Rigid applicators
- MRI Guided Implants
 - Geometric (HDR)
 - Dosimetric (permanent)

What we do not consider

- MR safety
- Radiation Safety
- MR scanner QA
- Brachytherapy QA
 - HDR
 - Applicators
 - Sources
 - TPS
- MR sequences for target definition
- Choice of isotope/dose rate

 Boy, 6, Dies of Skull Inury During M.R.I.
 July 31, 2001

- Radiation Offers New Cures, and Ways to do Harm
 - January 23, 2010

The New York Times

Why MRI? (prostate)

Prostate

- Visualization of capsule and substructure
 - T1, T2
- Identification of primary tumor
 - MRS, DCE, DWI
- Excellent identification of bladder, urethra and rectum

Why MRI? (gyn)

- Target visualization
- Normal structures
- Target definition guidelines

Brachytherapy Examples

- HDR (gyn)
 - Preplanning
 - Implant
 - Applicator placement
 - Needle guidance
 - Blind
 - Image guided
 - Quantitatively guided
 - Planning
 - HDR delivery

- Permanent (prostate)
 - Biopsy
 - Volume study
 - Preplanning
 - Implant
 - Planning
 - Needle guidance
 - Adaptive
 - Post implant evaluation

Components of Brachytherapy

- Applicators or sources placed in patient
- Imaging with devices in place
- Applicators localized wrt anatomy
- Treatment planning in MR

Devices in MR

- Safe vs. compatible
- HDR applicators offered in MR versions
- Accessories may be safe but not compatible
- Compatibility may be pulse sequence dependent
- Image with devices in scanner

M.E. Ladd in Interventional Magnetic Resonance Imaging

Image Based Tasks for Brachy Planning

- Sources
- Applicators & Needles
- CT may not visualize target well, but:
 - Excellent spatial accuracy
 - Excellent device separation
 - Scout provides independent data
 - Scanning the entire implant is straightforward
 - Quick, multiple scans easy

MR Based planning: Post-implant Evaluation

- Image guided implant
- Multiple MR sequences
 - Anatomy T2
 - Sources T1 (artifacts merge)
- CT source identification
- Implanted objects provide means of registration

MR Based Planning: Rigid Applicators

Rigid applicators

- Dwell locations
- Channel assignments
- Normal tissues
- Target delineation
- Model based applicator localization: dwells inherent
- Multiple sequences
 - Applicator
 - Anatomy

MR Based planning: T&R,T&O

- Target definition is most relevant to MR
 - GEC-ESTRO recommendations
 - HR CTV
- MR compatible applicator differences
 - Channel diameters
 - Lack of shielding
- Applicator enable fusion

MR Based Planning: Interstitial GYN

- 10-30 needles
- Assume HDR with postimplant planning
- Most devices plastic, INOT QUITE!
- Relatively large irregularly shaped tumors

Needle localization and identification

- Localization
 - MR artifacts larger than CT
 - Tip
 - Approaching needles
- Identification
- Verification
- CT
 - Dummies
 - Signal beyond pt
 - Smaller artifacts

Needle Localization

- MR artifacts larger/ambiguous compared to x-ray or CT
- MR dummies not readily available
- CT fusion assists
 - Less (not none) artifact
 - Tip identification
 - Channel identification

Catheter Identification

- CT Scouts provide independent assessment
- X-ray dummies help reduce ambiguities
- Tracking technology provides both functions without ionizing radiation

Summary: MR Based Planning

- MR safety vs. MR compatibility
- MR applicators generally differ from predecessors: shielding, gauge, geometry, adaptability
- Multiple sequences to achieve needed information
- Applicator identification/verification more challenging than x-ray or CT
- Need for independent verifications

MR Guided Brachytherapy

- Brachytherapy is dominated by placement
- Optimization can make a good implant better but cannot make a poor implant good
- Placement is controlled at a distance
- How do we use MR to improve placement?

Insertion under MR guidance

- Magnet design
 - Open
 - Closed
- Interstitials
 - Geometry
 - Dosimetry

Open Magnet Insertion

- MR guided targeting
 - Biopsy
 - Brachytherapy
 - Geometric
 - Dosimetric
- Requires localization of needle guidance device
 - Template
 - Image based
 - External system
 - Optical
 - Mechanical

Closed Magnet Insertion

- Limited access
- Table coordinates
- Multiple patient positioning

MR Guided Needle Placement

- ~real time imaging
- Allows visualization of needle wrt
 - Target
 - Normal structures
- Needles degrade image
- Target shifts
- Tends to focus on needle not configuration
 - Catheter spacing
 - Multiple depths
- Allows easier needle placement

Real Time Imaging with Active Tracking

.

MR Tracking: Needle Identification

- MR Tracker
- Capture location along length of needle
- User identifies channels
- Tracker used to resolve ambiguities in artifact localization

MR Dosimetry Guided Implants

- Permanent implants
 - Seed identification challenging
 - Needles as surrogates

- No repositioning of pt
- Scanner coordinate system
- Template/robot registration

Additional Needles Necessary? Needle insertion Next Needle Place Radiologic **Dosimetric RT** imaging seeds evaluation evaluation Reposition **Dose evaluation** needle **Feedbacks:** Geometric **Plan modification Dosimetric**

Adaptive Planning

- Desired location not achieved
- Actual location observed and incorporated in dosimetry
- Loss of coverage 5-15%

Dose Distributions Based on Source Locations

Geometric vs Dosimetric

divergence

Preplan

Intermetiate: with observed trajectories based on RT imaging

Dosimetric Feedback

divergence

Preplan

Intermetiate: with observed trajectories based on RT imaging

Final: _____ intermediate + additional sources_

Imaging Feedback

- Coronal view
 Contoured anatomy overlaid
- 2 needles placed

Geometric Feedback

- In arbitrary image plane
- Compare needle with planned trajectory

Dosmetric Feedback & Adaptive Planning

>95% PZ with apex ΡZ Urethra Ant Rect 50% 100%

Identification of Tumor

- Multiparametric MR imaging
 - T1,T2
 - Dynamic contrast
 - Diffusion weighted
 - Spectroscopy
- Focal brachytherapy
 - Alternative to active surveillance with minimal restriction on future treatments
 - Potential for sub-volume boost of standard RT

Conclusions

- MR is an ideal image guidance modality for brachytherapy. Outstanding visualization of pelvic anatomy
- MR can be involved in brachytherapy at various levels of complexity
- MR involves an increased level of safety concerns
- Challenges
 - Cost
 - Source/applicator localization identification
 - Constrained environment