Multi Modal PET/CT Imaging: The Clinical Point of View – Focus on Non Small Cell Lung Cancer

Philippe Lambin, MD, PhD

U.H. Maastricht, MAASTRO Clinic

Philippe.lambin@maastro.nl

www.maastro.nl, www.predictcancer.org, www.mistir.info, www.radiomics.info

Learning Objectives: NSCLC The Importance of CTPET

- 1. For prognosis and treatment decision (Theragnostic)
- 2. Gross Tumour Volume & Biological target Volume identification & contouring (4D-CTPET superior to 3D)
- 3. To adapt the treatment
- 4. To use new Imaging Biomarkers (Hypoxia, Labeled drugs...)
- 5. To delineate new target volume: GTV Low drug uptake, Normal Tissue Avoidance Volume & Normal tissue Preferential Volume

Multimodal Imaging: Focus on Lung Cancer

1. Theragnostic (treatment decision after diagnosis)

- 2. Gross Tumour Volume identification & contouring
- 3. Adaptive Radiotherapy
- 4. Metabolic response @ 3 months
- 5. GTV_{LDU} (LDU = Low drug uptake target)

6. Normal Tissue Avoidance Volume & Normal tissue Preferential Target Volume

Personalized Medicine: Multifactorial Decision Support Systems

Lambin et al. Nature Rev. Clin. Oncol 2012; Lambin et al. Radiother Oncol 2013

Clinical data only (TNM) •Leave-one-out AUC: 0.65 LOO ROC Plot for S2y (82pts, P/N: 24/58) Kaplan-Meier Survival Curve 1 **100**F 0.9 low risk group (>median) 0.8 high risk group (<median) 80 0.7 0.6 % ALIVE sensitivity 60 0.5 0.4 40 0.3 20 0.2 LOO AUC: 0.6501 0.1 Train AUC: 0.7083 0 0 k 0 3 2 **N** 0.2 0.4 0.8 0.6 1-specificity Time (YEARS)

Prediction of survival in Lung cancer:

Selected features: WHO-PS, clinical T stage, clinical N stage

Lambin et al. Nature Rev. Clin. Oncol 2012, Dehing-Oberije et al.; Oberije et al.

Prediction of survival in Lung cancer: Clinical + Image data

•Leave-one-out AUC: 0.76

Decision Support System of first generation: Nomogram Lung Cancer

Nomogram for 2-year survival

Results: Risk groups

www.predictcancer.org

Multimodal imaging: Focus on Lung Cancer

- 1. Theragnostic (treatment decision)
- 2. Gross Tumour Volume identification (GTV1-2) & contouring
- 3. Adaptive Radiotherapy
- 4. Metabolic response @ 3 months
- 5. GTV_{LDU} (LDU = Low drug uptake target)
- 6. Normal Tissue Avoidance Volume & Normal tissue Preferential Target Volume

¹⁸F-Fluoro-2-deoxy-D-glucose (FDG)

Vander Heiden M et al. Science 2009

MAASTRO

Multi Modal Imaging

CT

PET

Fusion CT/PET

PET-CT

Advantages:

- Combination of anatomical and functional information
- Identical position of patient
- No time interval between PET and CT scan
- CT can be used for attenuation correction
- CT densities can be used for RT dose calculation

Planning PET-CT scan

- Images for simulation in treatment position
- Flat table + lasers
- Drawing of the lines on the patient
- Immobilisation system (mask, arm support...)
- Preference for 4D image acquisition

PET

- Window-level setting:
 - standardized setting necessary (! Also for CT)
 - and other standardization... (next speaker)

Same tumor, different settings

AAPM, 2013

Which volume to treat? GTV1

NSCLC with atelectasis

Universiteit Maastricht

GTV2: N-staging in NSCLC

	СТ	(CT-)PET
Sensitivity	33-83%	77-91%
Specifity	66-90%	67-92%
PPV	46-71%	67-90%
NPV	68-86%	77-97%
Accuracy	65-80%	73-92%

Dwamema et al., Radiology 1999 Fisher et al., Lancet Oncol 2001 Gould et al., Ann Intern Med 2003 Kramer et al., Ann Surg 2003 And others

AAPM, 2013

Universiteit Maastricht

sROC-analysis FDG-PET vs. CT

Residual risk for 0.75 undetected lymph node metastases 0.5 in patients with X **NSCLC: <10%** 0,25

Without elective nodal irradiation < 5 % isolated nodal failures CT: Senan et al. IJROBP 2002, Rozenzweig et al. JCO 2007 PET: De Ruysscher et al. IJROBP 2005; Belderbos et al. IJROBP 2006

0.25

0,75

AAPM, 2013

Interobserver Variation in Delineation

CT: large interobserver variation

Steenbakkers et al., IJROBP 2006

AAPM, 2013

PET Delineation

Methods Manual:

Visual

niversiteit Maastricht

Automated:

- SUV based
 - Fixed threshold (% of maximal SUV)
 - Fixed SUV value
- Source-to-background based methods (validated in H&N tumours)
- Watershed-clustering methods

Daisne, Radiology 2004; Hatt et al. Review

Size of FDG-based GTV is influenced by the contouring method

25 primary NSCLC, FDG based GTVs

Contouring methods:

- visually (GTV_{vis})
- threshold = SUV 2.5 (GTV_{2.5})
- 40% of maximum accumulation in lesion (GTV_{40})
- contrast dependent algorithm (GTV_{bg})
- Significant differences correlating with
- $\mathrm{SUV}_{\mathrm{max}}$
- size of lesion
- inhomogeneity of accumulation

Nestle U et al. J Nucl Med 2005 46; 1342-1348

Delineation: SBR method

- SUV threshold dependent of source-to-background as measured in spheres
- Source: tumour
- Background: normal lung tissue or muscle

Multicentric calibration:

Öllers et al. Radioth Oncol 2008

Delineation: SBR method

- Validation of SBR based autocontouring in NSCLC
- Autocontouring as base for definitive target volume definition

Interobserver Variation in Delineation

PET-CT: reduction in interobserver variation

AAPM, 2013

Interobserver Variation in Delineation

manual

SBR-contour based

SBR-based delineation results in:

- a reduction in GTV volumes
- a reduction in interobserver variation

Auto-Contouring vs. Manual Contouring of Lymph Nodes

- Autocontouring is *more sensitive and specific* in detection lymph nodes
- Autodelineation significantly reduces lymph nodes volumes
- Reduces interobserver variability

Iniversiteit Maastricht

van Baardwijk et al.; IJROBP 2007

PTV prim. tumour PTV CT N+ PTV PET N+

Universiteit Maastricht

Oesophagus

V55 (%) MED (Gy) Dmax (Gy)

van der Wel et al. Int J Radiat Oncol Biol Phys 2005

De Ruysscher et al. Radiother Oncol 2005

Universiteit Maastricht

Lung

V20 (%) MLD (Gy)

Universiteit Maastricht

van der Wel et al. Int J Radiat Oncol Biol Phys 2005

De Ruysscher et al. Radiother Oncol 2005

Theoretical radiation dose escalation with PET-CT planning

Universiteit Maastricht

van der Wel et al. Int J Radiat Oncol Biol Phys 2005, De Ruysscher et al. Radiother Oncol 2005; van Baardwijk et al. J Clin Oncol 2010

4D imaging: Why?

- Improved tumor volume determination
- Improved SUV determination
- Improved (automatic tumor) contouring

3D 'normal' PET

4D respiration correlated PET

Motion blurring of 3D PET

- Heterogeneous parts of the tumour might be completely missed
- High intensity regions are 'averaged'; quantification of SUV is incorrect
- Gross tumour volume might be overestimated

Universiteit Maastricht

Why 4D imaging?

- 3D CT is used for attenuation correction of PET (in PET-CT scanners)
- This can lead to geographical errors and false positive lesions

Radiology 2003; 226: 906-910.

Using wrong CT attenuation leads to large artefacts

AAPM, 2013

4DCT attenuation correction for 4DPET: small lesions near the diaphragm

Hamill *et al*, *"Respiratory-gated CT as a tool for the simulation of breathing artifacts in PET and PET/CT,"* Med.Phys. 35(2):576-85 (2008).

Take Home Messages

- Use of window-level settings for both CT and PET
- Mediastinal node involvement:
 - PET: high sensitivity and specificity
 - CT: definition of nodal area border
- Target volume delineation:
 - PET: autocontouring (base for target volume delineation)
 - PET: reduction interobserver variation
- Be aware of pitfalls

Pittfalls

Be aware of:

- Adenocarcinoma in situ (BAC):
- Post-obstruction pneumonia:
- Inflammatory diseases:
- Heart:
- Movement of tumor:

limited/no uptake of FDG increased uptake of FDG increased uptake of FDG or mediastinal involvement? blurring of PET signal \rightarrow 4D PET-CT

Multimodal Imaging: Focus on Lung Cancer

- 1. Theragnostic (treatment decision)
- 2. Gross Tumour Volume identification & contouring

3. PET-guided Adaptive Radiotherapy

- 4. Metabolic response @ 3 months
- 5. GTV_{LDU} (LDU = Low drug uptake target)

6. Normal Tissue Avoidance Volume & Normal tissue Preferential Target Volume

What is Adaptive RT?

"Adaptive radiotherapy is the optimization of the <u>treatment plan</u> based on information acquired <u>during</u> the course of treatment"

Examples:

- <u>Re-planning</u> based on imaging (geometry) information
- <u>Re-planning</u> based on (early) response information / assessment (both for normal tissue toxicity or target volume)
- A plan choosen from a <u>library of plans</u> based on patient geometry during treatment

Not included in 'my' definition:

- IGRT is the optimization of the patient positioning during treatment

A lung cancer case

• First CT

 Second CT after 3 fractions

Third CT
after 17 fractions

Primary tumour volume vs. lymph node volume & displacement

*van Elmpt et al; "Volume or Position changes of primary lung tumor during (chemo-)radiotherapy cannot be used as a surrogate for mediastinal lymph node changes: The case for optimal mediastinal lymph node imaging during radiotherapy," IJROBP 79(1):89-95 (2011).

Repeated PET during treatment:

Hypothesis:

Early metabolic response assessment *during* treatment can <u>better</u> predict the outcome (overall survival & pathological complete response) of lung & rectum cancer patients.

Example Lung cancer (NSCLC) of early (week 2) repeated imaging during RT

*van Elmpt et al, abstract World Conference on Lung Cancer, Amsterdam 2011.

**van Elmpt et al, "Response assessment using 18F-FDG PET early in the course of chemo-radiotherapy is correlated with survival in advanced stage non-small cell lung cancer " Revision for J Nucl Med 2012

FDG-PET changes precede CT changes

FDG-PET:

- Cut-off: 15% (EORTC response)
- Changes in maximum SUV and mean SUV significant predictive for 2-year overall survival
 - HR 1.17 (95% CI: 1.05 1.30) per 5% decrease of SUV

CT (volume)

- Tumour volume pre-treatment RT is predictive for survival (already known)
- Change in tumour volume (CT) is not correlated to survival!

van Elmpt et al, "Response assessment using 18F-FDG PET early in the course of chemo-radiotherapy is correlated with survival in advanced stage non-small cell lung cancer" J Nucl Med 2012

Repeated CTPET in Rectum cancer

Van Stiphout et al. Radiother Oncol 2011

Hypoxia Imaging in Head & neck cancer

AAPM, 2013

Biomarker: Hypoxia (F-MISO PET)

Universiteit Maastricht

Zips et al. Radiother Oncol 2012

Multimodal Imaging: Focus on Lung Cancer

- 1. Theragnostic (treatment decision)
- 2. Gross Tumour Volume identification & contouring
- 3. Adapative Radiotherapy

4. Metabolic response @ 3 months

5. GTV_{LDU} (LDU = Low drug uptake target)

6. Normal Tissue Avoidance Volume & Normal tissue Preferential Target Volume

Follow-up: CTPET Evaluation at 3 months (Metabolic response + Met's)

Van Loon et al. EJC 2008, 2010

Follow-up: Metabolic Response Evaluation at 3 months

Van Loon et al. EJC 2008, 2010

Follow-up: Metabolic Response Evaluation at 3 months

- Costs per QALY (Quality-adjusted life year)
 - PET-CT: € 69.000
 - CT: € 264.000
- Is follow-up PET-CT cost-effective?
 - More cost effective than CT @ 3 months
 - Depending on varying societies acceptance to pay per QALY: The Netherlands example : max. € 80.000; UK: max. £ 30.000...

Voxel Control Probability (VCP) based on Pattern of relapse studies

Functional imaging

X= Intratumoral relapse (based on metabolic response)

Needed = 1. 4D CTPET 2. Validated automatic delineation software 3. Treatment position AAPM, 2013

Identification of Radio Resistant Voxels in Lung Cancer

Status before treatment

Metabolic response (3 months after treatment)

Intratumoral Relapse

Aerts et al. Radiother Oncol 2009; Lung Cancer 2012

Dose escalation strategies

AAPM, 2013

Randomized Phase 2 trial MAASTRO-NKI

remain in the study

Examples of treatment plans

Arm A: Homogeneous boost

Arm A: - Prescribed dose: 81.6 Gy - MLD: 19.0 Gy

Arm B: PET Boost

Arm B:

- Prescribed dose: 93.6 Gy
- MLD: 19.3 Gy

AAPM, 2013

Multimodal Imaging: Focus on Lung Cancer

- 1. Theragnostic (treatment decision)
- 2. Gross Tumour Volume Contouring
- 3. Adapative Radiotherapy
- 4. Biological target Volume Contouring

The Future:

5. GTV_{LDU} (LDU = Low drug uptake)

6. Normal Tissue Avoidance Volume & Normal tissue Preferential Target Volume

Voxel Control Probability (VCP)

An example: PET Imaging of 89 Zirconium – Cetuximab

Universiteit Maastricht

Aerts *et al.* JNM, 2009; Lambin *et al.* Radiother Oncol. 2010

An example: PET imaging of 89Zirconium– Cetuximab

FDG-PET-CT

89Zr-cetuximab-PET

Aerts et al. JNM 2009; Lambin et al. Radiother Oncol. 2010

Van Loon et al. In preparation

Multimodal Imaging: Focus on Lung Cancer

- 1. Theragnostic (treatment decision)
- 2. Gross Tumour Volume Contouring
- 3. Adapative Radiotherapy
- 4. Biological target Volume Contouring

The Future:

5. GTV_{LDU} (LDU = Low drug uptake)

6. Normal Tissue Avoidance Volume & Normal tissue Preferential Target Volume

"There are no radioresitant

tumours

There are only radiosensitive

tissues."

AAPM, 2013

Normal Lungs are also Heterogeneous

Lungs

Zhang 2008, Perfusion scan

Low perfused areas + bullae = **NTPV**

Petit et al. R&O 2010

Normal Lungs with high SUV uptake = more radiosensitive

Petit et al. R&O 2010

Normal lungs with high SUV uptake

= more radiosensitive

Normal lung + FDG uptake = NTAV

Petit et al. R&O 2010

The Ductus of the Parotid

Conclusions

The importance of CTPET in Lung cancer

- 1. For prognosis and treatment decision (theragnostic)
- 2. For Gross Tumour Volume & Biological Target Volume contouring (GTV1-2; Dosimetric advantage, 4D-CTPET superior to 3D)
- 3. To adapt the treatment (repeated CTPET during treatment)
- To use new Imaging Biomarkers (Hypoxia, Labeled drugs...) = *Research*
- To delineate new target volume: GTV Low drug uptake, Normal Tissue Avoidance Volume (NTAV) & Normal tissue Preferential Volume (NTPV) = Research

Thank you for your attention

Philippe Lambin, MD, PhD

U.H. Maastricht, MAASTRO Clinic

Philippe.lambin@maastro.nl

www.maastro.nl, www.predictcancer.org, www.mistir.info, www.radiomics.info

