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 Brief introduction of x-ray differential 

phase contrast (DPC) imaging 

 Intrinsic noise relationship between DPC 

imaging and absorption imaging 

 Task-based model observer studies for 

DPC imaging 

 Summary 
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rotary stage detector phase grating 
Zambelli et al.,”  Med. Phys., 2010, Vol. 37, pp. 2473-2479 



 G0 – Absorption Grating 
 15 µm opening 

 37 µm pitch 

 2 cm x 2 cm 

 60 µm Au depth 

 
 G1 – Phase Grating (π differential shift for 50% of beam) 

 4 µm opening 

 8 µm pitch 

 7 cm x 7 cm 

 40 µm etch depth 

 
 G2 – Absorption Grating 

 2.25 µm opening 

 4.5 µm pitch 

 7 cm x 7 cm size 

 30 µm Au depth 
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All gratings were made by Joe Zambelli and Ke Li using the on-campus micro-

fabrication facility: Wisconsin Center for Microelectronics (WCAM) at UW-Madison.  
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 Absorption: 

 

 

 

 

 DPC: 
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 The NPS of DPC-CT can be quantitatively 

determined from the NPS of the associated ACT 

(and vice-versa) 

 

 

 

 This relationship independent of: 

 Dose 

 and X-ray tube/detector (except  their geometric setup) 

11 

where 

K. Li, N. Bevins, J. Zambelli, G.-H. Chen, Med. Phys. 40, p 021908 (2013) 
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 Method A: Image-based approach 

 1. Calculate the NPS of absorption CT 

 2. Scale the NPS of absorption CT by the ratio of 
Cg / f

2 

 Subject to errors caused by aliasing 

 

 Method B: Projection-based approach 

 1. Scale the absorption projections by a factor of 

 2. Reconstruct DPC-CT using these scaled 
absorption projections 

 3. NPS calculation 

 Immune to aliasing 
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 DPC tomosynthesis reconstructed by shift-and-add 
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 DPC tomosynthesis reconstructed by FBP 
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 We considered the five commonly used 
model observers in x-ray absorption 
imaging: 

 Ideal observer 

 Non-prewhitening (NPW) observer 

 Non-prewhitening observer with eye filter and 
internal noise (NPWEi) 

 Prewhitening observer with eye filter and 
internal noise (PWEi) 

 Channelized Hotelling Observer (CHO) (with 
Gabor basis functions)  
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2D noise power 

spectrum (NPS) 

Noise-only 

image 

Absorption CT DPC-CT 

Zambelli, et al. Proc. SPIE, 7961, p79613N (2011) 



 A model observer should predict human 

performance, but each model observer will 

behave differently. 

 This then motivates the following question: 

 Given the peculiar noise power spectrum in DPC 

tomographic imaging, which model observer 

should be used to assess the performance of 

DPC imaging?  
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Original Segment, MTF 

blurring 

8 pixels (0.64 mm) 

16 pixels (1.28 mm) 

32 pixels (2.56 mm) 

64 pixels (5.12 mm) 

128 pixels (10.24 mm) 

1. Detection of circular object 2. Detection of breast lesion* 

*N. Prionas, et al., Radiology, 256, p714 (2010) 

              Breast CT data courtesy of John Boone 



 2AFC: two-alternative forced-choice 
 SKE: signal-known exactly  

 The ground truth (lesion size and shape) and 
circular cues (lesion location) were provided to the 
observers 
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Left or right? (you 

must choose one) 



 Four physicist observers 

 Each read 256 trials x 7 tasks (5 discs, 
2 breast lesions) 

 Training session prior to actual trial 

 Monochrome diagnostic quality 
monitor (Coronis 5MP Mammo, Barco 
Inc.) 

 Responses recorded by 
mouse/keyboard input 

 70 cm viewing distance 

 W/L: [mean-4σ, mean-4σ] 

 Dark reading room 

 
 23 



24 

8 16 32 64 128
0.2

0.4

0.8

1.6

3.2

Detail (pixels)

C
o
n
tr

as
t

 

 

Human observer A

Human observer B

Human observer C

Human observer D

Inter-observer variation< 5% 
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Signal 
Model Observer 

Ideal NPW NPWEi PWEi CHO 

Disc (d=8) [-72%, 72%] [-16%, 16%] [-81%, 81%] [-17%, 17%] [-9%, 9%] 

Disc (d=16) [-71%, 71%] [-11%, 11%] [-19%, 19%] [-13%, 13%] [-10%, 10%] 

Disc (d=32) [-72%, 72%] [-13%, 13%] [-9%, 9%] [-9%, 9%] [-9%, 9%] 

Disc (d=64) [-72%, 72%] [-12%, 12%] [-9%, 9%] [-9%, 9%] [-9%, 9%] 

Disc (d=128) [-75%, 75%] [-23%, 23%] [-20%, 20%] [-17%, 17%] [-11%, 11%] 

Lesion 1 [-39%, 39%] [-9%, 9%] [-9%, 9%] [-9%, 9%] [-9%, 9%] 

Lesion 2 [-53%, 53%] [-18%, 18%] [-15%, 15%] [-16%, 16%] [-11%, 11%] 



 DPC-CT or DPC-Tomo imaging does not need new 
image quality metrics; existing performance metrics 
from x-ray absorption imaging can be directly applied; 

 Given x-ray absorption imaging performance and 
grating quality factors (visibility and transmission rate), 
one can quantitatively determine the corresponding 
performance of a corresponding DPC imaging system 
for grating based DPC imaging system. 

 The model observer method can be used to predict 
human performance for relatively simple SKE tasks; 
Among all model observer investigated in this study, 
CHO model yields the best overall agreement with 
human observer performance.  
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 Using model observer performance as a 

metric to optimize DPC imaging system; 

 Determine the pros and cons for DPC 

imaging system for a given clinical task and 

radiation dose constraint. 
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 Dr. Zambelli, Dr. Bevins, John Garrett 

 Physicist observers who participated in 

the human observer experiments 
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Thank You 
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UW CT Research 

www.medphysics.wisc.edu/research/ct/ 

gchen7@wisc.edu 



 Basic requirement 

 System is linear and shift-invariant 

 

 DPC imaging system meets this requirement 

 Because it does not require any non-linear stage to be added to 

the imaging chain 

 Example: Experimental demonstration of noise stationarity 
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 Experimental 2D axial DPC-CT noise 

images  
 Acquired from a benchtop DPC-CT system 

 80 µm pixel size  

 360 x 360 image matrix size 

 Digital signals were blurred by the system 

MTF before being added to the 

experimental noise background 
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 Responses from the 2AFC experiments 

generated the portion of correct response (Pc), 

which is related to the model observer d’ by 

 

 

 

 

 To minimize sampling errors due to the finite 

number of trails, the expected value of Pc should 

be close to 92% in 2AFC experiments* 
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* A. Burgess, Med. Phys., 22, p643 (1995) 



 In order to get an Pc close to 92% for each task 

 Two contrast levels to achieve Pc ∈ [88%, 92%] and Pc ∈ [92%, 
96%] were determined by training trail results 

 The 2AFC experiments were repeated at each of the two 
contrast levels to get two Pc values 

 The contrast threshold to achieve Pc = 92% was determined by 
linear interpolation 

38 
A. Burgess et al., Med. Phys. 28, p419 (2001) 
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 Error bars of human results: Sampling error 
 

 

 

 

 Error bars of model observer results: 

Uncertainty in the NPS/covariance 

measurement (measured using bootstrapping)* 

 Results were reported as contrast-detail curves 
 x-axis: Object size (in pixels) 

 y-axis: Contrast threshold to achieve 92% Pc 
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40 

Ke Li, et al, Phys. Med. Biol. (2013) 


