Advanced Imaging for Breast Cancer: Magnetic Resonance Imaging

Tom Yankeelov

Ingram Associate Professor of Cancer Research Departments of Radiology, Physics, Biomedical Engineering, Cancer Biology Vanderbilt University Institute of Imaging Science

Vanderbilt University

7 August 2013

Motivation

How is treatment response currently monitored?

- RECIST = <u>R</u>esponse <u>E</u>valuation <u>C</u>riteria in <u>Solid T</u>umors
- First published in 2000
- Idea: develop a simple method to assess therapy response in tumors to
- Applied only on patients with measurable disease at baseline
- Uses only anatomical CT and MRI for response assessment
- Sum of longest diameter (LD) for all target lesions is calculated
 - \rightarrow The change in baseline sum LD will be used to characterize response

Motivation

Pre-therapy

2 months post-therapy

FDG-PET

Pre-therapy

2 months post-therapy

Choi et al. Am J Roentgenology 2004;183:1619-27.

Motivation

Baseline	Visit 2	Visit 3	Visit 4	Visit 5	
T1: 24	25	28	32	48	
<u>T2: 14</u>	<u>15</u>	<u>16</u>	<u>18</u>	<u>23</u>	
LD: 38	40	44	50	71	
(o ch)	+5%	+16%	+32%	+89%	

- Anatomic imaging is limited; morphologic changes are nonspecific, often occur long after molecular changes are apparent
- Need methods to report on changes on the underlying pathophysiology

Next ~20 minutes of Your Life

Imaging Biomarkers
MR-based methods

Imaging Biomarkers in Cancer

- Anatomical/physiological
 - Tumor size
 - Cellular density
 - Metabolism (glucose, choline, ATP, pH)
 - Oxygenation (hypoxia, pO₂)
 - Vascular properties (blood flow, angiogenesis)
- Tumor-Host Interactions
 - Inflammation
 - Extracellular matrix changes + signaling
- Molecular
 - Cell surface receptor interactions
 - Intracellular signaling pathways (e.g. caspase)
 - Gene expression

Well-suited for MRI, CT, US

Well-suited for Nuclear + Optical

- Things MRI cannot do especially well:
 - 1) Targeted agents not well suited to MRI
 - \rightarrow Optical (pre-clinical) and nuclear techniques have >> sensitivity
 - 2) Several questions regarding drug effects not addressable by MRI
- Why is this the case?
 - Tissue has a "background" relaxation rate, $R_1 (= 1/T_1)$

- To detect an R_1 contrast agent, R_1 must increase significantly compared to noise level and background variations; say, +10%

- If native $R_I \approx 1$ sec⁻¹, then minimum detectable $\Delta R_I \approx 0.10$ sec⁻¹
 - $\rightarrow \Delta R_1$ = relaxivity•[CA]
 - → Relaxivity $\approx 4 \text{ sec}^{-1}\text{mM}^{-1}$ for Gd-DTPA
 - → Minimum [CA] = 25 μ M throughout ROI! (PET ~ 10⁻⁶ μ m) (less if relaxivity higher, but still quite challenging)

- Water molecules wander about randomly in tissue (Brownian Motion)
- In a free solution, after a time *t*, molecules travel (on average) a distance *L* from where they started
- But in tissue, compartment effects may hinder movement = restricted diffusion
- Boundaries may reduce distance molecules travel when compared to free molecules
- Thus, the *Apparent Diffusion Coefficient* (ADC) is lowered

• ADC depends on cell volume fraction

• Increasing cell density; more cell membranes per unit distance to hinder diffusion → lower ADC

• Tumor cellularity may be monitored by DWI

 $\frac{ROC \text{ Analysis}}{Sensitivity} = 0.64$ Specificity = 0.93 AUC = 0.70

 \rightarrow Sensitivity = true positive rate = TP/(TP+FN)

 \rightarrow Specificity = true negative rate = TN/(FP + TN)

Lori Arlinghaus et al., submitted

Dynamic Contrast Enhanced MRI

DCE-MRI

- Serial acquisition of images before, after an injection of contrast agent (CA)
- As CA perfuses into tissue, the T_1 and T_2 values of tissue water decrease
- Each voxel yields a signal intensity time course
- By fitting data to model, extract parameters that report tissue characteristics

- $K^{trans} =$ transfer rate constant
- v_e = extravascular extracellular volume fraction
- $v_b =$ blood volume fraction

 $\frac{\text{ROC Analysis}}{\text{Sensitivity} = 0.81}$ Specificity = 0.75 AUC = 0.80

Combining DW-MRI & DCE-MRI data:

Sensitivity = 0.88Specificity = 0.82AUC = 0.86 $\frac{\text{RECIST}}{\text{Sensitivity} = 0.33}$ Specificity = 0.95AUC = 0.65

Lisa Li et al., submitted

• Exploits transfer of magnetization between protons bound in macromolecules and free water protons

- Image contrast depends upon:
 - 1) Concentration of macromolecules
 - 2) Transfer rate between macromolecular and free water protons

• How do we quantify this measurement? Magnetization transfer ratio (MTR) maps

pCR: Δ MTR = -14%

Partial responder: $\Delta MTR = -7\%$

Progressive disease: $\Delta MTR = +6\%$

Arlinghaus et al. ISMRM 2012

- Working hypotheses:
 - Increased cellularity → Increased macromolecular pool → Increase in the MTR
 - 2) With successful treatment, MTR will return to values closer to healthy tissue

• Exploits magnetization transfer *and* chemical exchange of protons between amide protons and free water protons

- Image contrast depends upon:
 - 1) Concentration of amide protons
 - 2) Exchange rate between amide and free water protons

- Working hypotheses:
 - \rightarrow Backbones of proteins and peptides contain amides
 - \rightarrow Proteins/peptides concentrations altered in the tumor environment

 \rightarrow Changes in APT_{asym} corresponding to molecular changes in tumor Dula et al, MRM 2012

Summary

- RECIST criteria are fundamentally limited
- While MRI is not well-suited to molecular approaches, it can offer many clinical relevant measurements
 - \rightarrow DW-MRI
 - \rightarrow DCE-MRI
 - \rightarrow MT-MRI
 - \rightarrow CEST-MRI
 - → <u>Hyperpolarized MRI/MRS</u> (J. Kurhanewicz, K. Brindle)

Thank you very much for your time and attention.

thomas.yankeelov@vanderbilt.edu

Vanderbilt University Institute of Imaging Science