Advanced Imaging for Breast Cancer: Screening, Diagnosis, and Assessing Response to Therapy

Breast CT

John M. Boone, Ph.D., FAAPM, FSBI, FACR
Departments of Radiology and Biomedical Engineering
University of California Davis Medical Center

Breast CT Technology

Preliminary Clinical Assessments
Mathematical Observer Metrics
Lesion Insertion / t3D versus 2D
Anatomical noise / M↔T↔bCT
CE-bCT versus Mammo and Tomo
Summary

Disclosures (required by UC Davis):

• Varian Imaging Systems, Consultant
• CT Imaging, Consultant
• Stanford Research Institute, Consultant
• Dxray, Inc, Consultant
• Cedars Sinai Medical Center, Expert Witness
• Alston & Bird LLC, Expert Witness
• Varian Imaging Systems, Research Funding
• Hologic Corporation, Research Funding
• Fuji Medical Systems, Research Funding
• Stanford Research Institute, Research Funding (R21 subcontract)
• Siemens Medical Systems, Research Funding
Medical Physics

Dedicated Breast CT:
Radiation Dose and Image Quality Evaluation

A comprehensive analysis of DgN CT coefficients for cone-beam breast computed tomography

J. M. Boone
Department of Radiology, U.C. Davis Medical Center, Sacramento, California

N. Shah
Department of Radiology, U.C. Davis Medical Center, Sacramento, California

T. R. Nair
Department of Radiology, U.C. Davis Medical Center, Sacramento, California

(Received 13 July 2005; revised 13 September 2005; accepted for publication 3 October 2005; published 22 November 2005)

Breast CT Dose – Two View mammography

UC Davis Medical Center

Albion
Bodega
Cambria
Doheny

Albion 2004
Bodega 2007
Cambria 2012
Doheny 2013
Breast CT

Breast CT Technology

- Preliminary Clinical Assessments

 Mathematical Observer Metrics

Lesion Insertion / t3D versus 2D

Anatomical noise / M↔T↔bCT

CE-bCT versus Mammo and Tomo

Summary

Spatial Resolution: Modeled & Measured MTF's

Albion & Bodega

Cambria (2 x 2) [388 μm pixels]

Cambria (1 x 1) [194 μm pixels]

Doheny

3X Spatial Resolution

Breast CT

first breast cancer imaged: January 2005

second volunteer imaged: January 2005
Dedicated Breast CT: Initial Clinical Experience

PRE CONTRAST

POST CONTRAST

bCT (no injected contrast)

bCT (with contrast)
Breast CT

Breast CT Technology
Preliminary Clinical Assessments

- Mathematical Observer Metrics
 - Lesion Insertion / t3D versus 2D
 - Anatomical noise / M↔T↔bCT
 - CE-bCT versus Mammo and Tomo

Summary

\[\sum (f_i \times I_i) = d' \]

Pre-whitened matched filter
"computer observer"

Lesion absent
Lesion present

observations
Effect of slice thickness on detectability in breast CT using a prewhitened matched filter and simulated mass lesions

Nathan J. Passard
Cincinnati Health Inc., Rochester, New York 14615
Greg P. Abbey
Department of Psychology, University of California, Santa Barbara, California 93106
Kai Yang
Department of Radiology, University of California Davis Medical Center, Sacramento, California 95617
John M. Byrne
Department of Radiology, University of California Davis Medical Center, Sacramento, California 95617 and Department of Biomedical Engineering, University of California, Davis, California 95616
(Received 11 April 2011; revised 22 December 2011; accepted for publication 25 January 2012; published 14 March 2012)

Breast CT

Breast CT Technology

Preliminary Clinical Assessments

- Mathematical Observer Metrics
 - Lesion Insertion / t3D versus 2D
 - Anatomical noise / M↔T↔bCT
 - CE-bCT versus Mammo and Tomo

Summary

Background Noise

Anatomical Noise

mass lesions only / results do not reflect microcalcifications
Digital Subtraction Angiography
(Temporal Subtraction)
Reduces Anatomical Noise

Dual Energy Chest Radiography
(Energy Subtraction)
Reduces Anatomical Noise

27 patients were imaged using all 3 modalities

Anatomical complexity in breast parenchyma and its implications for optimal breast imaging strategies

Lin Chen
Department of Radiology, University of California, San Francisco, California 94143

Craig K. Abbey
Department of Radiology, University of California, San Francisco, California 94143

Anna Nowak
Department of Radiology, University of California, San Francisco, California 94143

Karen R. Lindor
Department of Radiology, University of California, San Francisco, California 94143

John M. Spoor
Department of Radiology, University of California, San Francisco, California 94143

(Received 17 August 2011; revised 21 January 2012; accepted for publication 26 January 2012; published 25 February 2012)

Association between power law coefficients of the anatomical noise power spectrum and lesion detectability in breast imaging modalities

Lin Chen, Craig K. Abbey, and John M. Spoor

Department of Radiology, University of California, San Francisco, California 94143

Received 12 November 2011; in final form 28 January 2012
Dense Breasts

Adipose Breasts

bCT, Tomo, and Mammo Comparisons

N = 23 pts
1000 ROIs per breast CT mammography tomosynthesis

breast CT

mammo

Tissue Thickness (mm)

0 10 20 30 40 50

slice thickness (mm)

Tomo

Coronal Sagittal Axial CC MLO CC MLO

files in breast

beta

0.1 0.5

Volume Glandular Fraction (%)
measured data on the breast CT system

tomographic angle

<table>
<thead>
<tr>
<th>disk diameter (mm)</th>
<th>15°</th>
<th>90°</th>
<th>45°</th>
<th>60°</th>
<th>90°</th>
<th>120°</th>
<th>180°</th>
<th>360°</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Breast CT Images

Mammo

0 mm | 5 mm | 10 mm | 15 mm | 20 mm | 25 mm | 30 mm | 35 mm | 40 mm | 45 mm | 50 mm | 55 mm

Breast CT

Tomosynthesis Images

Breast CT Technology

Preliminary Clinical Assessments

Mathematical Observer Metrics

Lesion Insertion / t3D versus 2D

Anatomical noise / M↔T↔bCT

● CE-bCT versus Mammo and Tomo

Summary
Prospective Clinical Trial

105 patients /103 lesions (BIRADS 4 or 5)
- imaged on VCO mamm / tomo / CE-bCT
- all biopsied

<table>
<thead>
<tr>
<th></th>
<th>microcalcifications</th>
<th>masses</th>
</tr>
</thead>
<tbody>
<tr>
<td>malignant</td>
<td>31</td>
<td>27</td>
</tr>
<tr>
<td>benign</td>
<td>27</td>
<td>18</td>
</tr>
<tr>
<td>total</td>
<td>58</td>
<td>45</td>
</tr>
</tbody>
</table>

2 Radiologists Rated Lesions using a 0 to 10 Conspicuity Score
0 = not seen 10 = excellent

one-way ANOVA with correction for multiple comparisons

Breast CT

Breast CT Technology
Preliminary Clinical Assessment
Mathematical Observer Metrics
Lesion Insertion / t3D versus 2D
Anatomical noise / M↔T↔bCT
CE-bCT versus Mammo and Tomo

Summary

Breast CT (Summary)

Patients find bCT more comfortable
Radiation dose is the same as 2V mammography
Early trials and computer sims show better mass lesion detection performance than mammography
Computer simulations show bCT reduces anatomical noise / Mammo or Tomo / reasons understood
CE-bCT has better sensitivity and specificity than mammo or tomo

Embargoed Data until Published (so not in printed notes)
Acknowledgements:

California BCRP 7EB-0075
California BCRP 11I-0114
R01 CA•89260
R01 EB•002138-10 (BRP)
R01 CA•129561 (R08)
P30 CA•093373 (CCSG)
Susan G. Komen Foundation
University of Pittsburgh