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Disclosure: 
Co-inventor of patents on field emission 

cathode and/or distributed source based x-ray 
technologies presented here. 



Leaning Objectives: 

 Understand the principle of carbon nanotube field 
emission x-ray technology  

 Understand the two major advantages of this new 
x-ray technology - ultra-high temporal resolution 
and flexibility in distributed source design 

 Understand that carbon nanotube field emission 
x-ray technology has opened up new horizons for 
novel imaging and therapy device development. 

 



Carbon Nanotubes (CNT) 
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Different forms of carbon 

Sp3 bond Sp2 bond Diamond Graphite 

 A hollow sphere with  60 carbon atoms 
 ~1x10-9 m (1nm) in diameter 
 (discovered in 1985, Nobel Prize, 1996)  

C60 “bucky-ball” 
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Unique properties 
 
 mechanically strong 

 
 chemically inert 

 
 high thermal conductivity 

 
 high electrical conductivity 

 
 Excellent electron field emitters 

(1-50nm in dia., ~1-10mm long graphene tube) 

History 
first observed in electron 
microscope study by Sumio Iijima 

(NEC) in 1991  
 
 

Carbon nanotube: newest form of carbon 
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3 mm 

10 mm 

Orientation 

Controlled and flexible formations of carbon 
nanotube patterns 

Pattern 



Field Emission - cold cathode 
 



Carbon Nanotube (CNT) field emission  
(cold cathode) 

e- e- e- e- e- e- e- e- e- 

Electron emission  

by E field not by heat. 
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Cold and hot cathode electron emission 
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Electron field emission: 

 I = aV2exp(-bF3/2/bV)  

Thermionic emission:  

J = 120T2 e-f/kT [A/cm2]  

T ~ 1000-2000oC 



Basic CNT cathode structure 

X-ray & b-ray on chip technology 

Carbon nanotube film 
Substrate 

Gate electrode 

Variable voltage 
power source 

Insulator 

e- e- e- e- e- e- e- 

Spontaneous control of x-ray production  
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Advantages of CNT cathodes 

Hot vs. cold cathode x-ray technology 

Cold Cathode Hot cathode 

High temporal resolution 

Distributed source design 

Mature technology 

Readily available 

Lower energy consumption 



CNT-Field Emission X-ray Technologies 
developed by our multidisciplinary group in 

collaboration with industry in the past decade 

 Imaging 

 X-rays 

 Micro-CT 

 Nanotube Stationary Tomosynthesis (IGRT) 

 Stationary Breast tomosynthesis 

 Therapy 

 Single cell and tissue irradiator 

 Small animal RT 

 Compact microbeam radiation therapy technology 

 



Media coverage of our work (Nature News, The Economist, Science 
and Technology, German Public Radio,..) 

“ Reinventing the X-ray” 
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 First CNT x-ray medical image (2002) 

 

40KV, 1mA, 20sec, 15” 
source-object distance 

“One of the highlights in physics research”  
   - Physics News in 2002.   

G. Z. Yue et al, Appl. 
Phys. Lett. 81, 355, 
2002 
 



Important Point 1: 
 CNT cold cathode x-ray source has intrinsic high 

temporal resolution and can be gated by 
arbitrary signal (w/o dark current). 



(a) (b) 

(c) (d) 

Expiration Inspiration 

G. Cao et al. SPIE Medical Imaging 2008; G. Cao et al. 
Phys Med Biol 2009 

Vascular 
calcification 

Proximal 
aortic arch 

(e) 



(a) 5 mm (b) 

(c) (d) 

L R 

CNT micro-CT: mouse cardiac-gated CT 

Yueh Lee (UNC) unpublished 



cathode 
assembly 
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Important Point 2: 

CNT cathode x-ray technology is 
ideal for distributed source design  

e- 
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Multi-pixel x-ray source technologies 

 
Stationary CT 
 

- Stationary  
Tomosynthesis 
(breast and IGRT) 
 

- Micro-RT 
 

- Single cell irradiator 
 

- Microbeam  



multi-pixel x-ray CNT micro-RT  

Electronically shape RT field and IMRT 

Monte Carlo dose calc.  

Electron pixel beams 

X-ray pixel beams 

2mm 



Schreiber and Chang (2008) 

Micro-RT dosimetry: Monte Carlo Simulation 
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CNT field emission Single Cell Irradiation (SCI) 

 Selectively irradiate specific 
cells in Petri dish  

 Onboard microscope reveals 
information about how cells, 
DNA, and proteins respond to a 
range of different local 
radiation stresses (different 
doses, dose rates, patterns, 
etc.) 

(HeLa and mouse macrophase cell 
image by John Miller of PNNL). 

microbeam 
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200 μm 

Microscope image of human 
pancreatic cells (Capan-1) in petri dish.  

28 mm microbeam 

Schematic of the prototype CNT field 
emission multi-pixel microbeam 
array. 

(Bordelon et al Rev. Sci. Instru.2008)) 



CNT cellular irradiation system 



100mm gH2AX: 

marker for 

DNA 

damage  

nuclei 



Stationary breast tomosynthesis 
via  

CNT multipixel source array  x-ray tube (UNC, Xinray) 

  



Hologic Selenia Dimension Tomosynthesis  
scanner installed in our lab (Jan 2011) 

Rotating gantry 
tomosynthesis scanner  

CNT x-ray source array system in 
clinical use (clinical trial July 2013) 

CNT 
Stationary tomosynthesis system 



Nanotube Stationary Tomosynthesis 

(NST) 

for real time IGRT 

 
(Previous collaboration with Siemens and 

Xinray)  



State-of-the-art IGRTt 3D 
IGRT technology 

Limitations: 

Motion blur and 3D imaging interferes therapy 



Nanotube Stationary tomosynthesis IGRT 

(Maltz, et al Med Phys 2009)  

Sylvia Sorkin Greenfield Award (Best Paper Published in Medical Physics in 2009) 



Multi-pixel source array x-ray tube 

52 individually controlled kV x-ray sources 



Nanotube Stationary Tomosynthesis 

52 pixel source 

imaging: 
 

 

•Real-time 

electronic “scan” 
 

• Imaging does not 

interfere with 

treatment delivery 

 

RT 

B. Frederick 



First Prototype NST tomosynthesis image 
(courtesy of Siemens) 



Treatment sites studied 

 Lung 

  

 

Prostate 

 

 

Head & neck 

CT NST 



Microbeam Radiation Therapy 
 

It intrinsically eradicate tumor and spare normal tissue 
in animal experiments. 

 
 

Fig.3. (a) Horizontal section of the cerebellum of a piglet of 15 months after irradiation 

with a skin entrance dose of 300 Gy. Some cells and their nuclei directly in the path of 

microbeams were destroyed. There was n o tissue destruction present, nor were there 

signs of hemorrhage [Blattmann et al] 



10 

 

30 

300 

Unit: cm Unit: mm 

               2Gy x 30                 200Gy x 1 

   5Gy/min            100Gy/s 

   Conventional RT                        MRT 

        (uniform)                                             (discrete) 



Hair regrowth post MRT  
(EMT-6 mouse mammary tumor model BNL Dilmanian et al). 

 

 

Fig. 8. Long-term ( >6 months postirradiation) hair regrowth in mice irradiated with 

cross-planar microbeams of 520 Gy in each array (a) and a broad beam of 38 Gy (b); a 

normal, unirradiated mouse leg of the same age is shown in (c) for comparison. 



Bottlenecks for MRT human use 

 Lack of clear understanding of MRT working 
mechanism 

 Bystander Effect 

 Tumor microvasculature 

 Lack of widely available MRT delivery devices 

 Only synchrotron facility based MRT 

 A few in the world 

 No human MRT system 

 

 

 



CNT field emission compact MRT* 

 Patent application filed by Chang and Zhou (Jan. 2009) 

Goal is to design, develop, demonstrate feasibility of a compact MRT system that 
can produce MRT radiation similar to MRT of a synchrotron facility.     



 CNT field emission cathodes 
directly control x-ray 
generation 

 Allows for geometric 
flexibility, compact size, low 
cost 

 5 line sources collimated to 
280 um microbeam  

 160kVp, 1.1 Gy/min, PVDR~17 

 Electronic control → radiation 
gated to arbitrary signal  

 

Desktop MRT Irradiator 



Prototype CNT MRT device design 

 



Accuracy: Histology Confirmation 

 

  11 out of 13 experiment mice 
received all prescribed 
microbeams on target  

 Overall targeting accuracy:      
~ 480 mm 

 

 

 
 Images: Irradiated U87MG human 

glioma tumor mice brains with γ-
H2AX immunofluorescence staining 
(4 hrs post-radiation) showing DNA 
double strand damage by radiation 

 beam width 280 mm 

 beam c-t-c 900 mm 

 Average tumor size:  1.4 mm 

 

 

 



Pavel Chtcheprov, Laurel Burk, Christina Inscoe, 
Rachel Ger, Michael Hadsell, Lei Zhang, Hong Yuan, 

Yueh Lee, Sha Chang, Jianping Lu, Otto Zhou 

 



Peak Valley Dose Ratio (PVDR) 
 Respiratory motion can deteriorate PVDR significantly 

 Respiratory gated MRT to minimize motion effect 
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Gated MRT Algorithm 



MRT Mouse Liver 

 Liver selected due to its large motion during breathing 

 Sedated mouse with isoflurane 

 Sagittal x-ray projection to determine liver position 

 4 lines total, 14 Gy/line 
 2 non-gated (10 mins) 

 2 gated (~33 mins) 



Mouse Liver Study Results 

Gated Non-Gated Gated 

Non-Gated 

Gated 

Gated FWTM: 487µm 
Non-Gated FWTM: 818µm 
Gated PVDR: 5.1 
Non-Gated PVDR: 2.1 

gH2AX: DNA damage stain  



Leaning Objective Review: 
 Understand the principle of carbon nanotube field 

emission x-ray technology 

 Electric field not thermal controlled electron emission 

 

 Understand the two major advantages of this new x-
ray technology: 

  ultra-high temporal resolution and intrinsically gated x-rays  

  flexibility in distributed source design: individually controlled x-
ray pixels, non-point sources. 



• Carbon nanotube field emission x-ray 
technology has opened up new horizons for 
novel imaging and therapy device development  

Leaning Objective Review: 

 Multi-pixel x-ray source array  
 3D imaging without mechanical motion 
 Ultra-high temporal resolution imaging and therapy 

gated with arbitrary singal 
 Customized cathode/tube design to fit specific 

application 
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