
8/1/13%

1%

Pushing%PET%Imaging%to%the%
Cellular%Level:%Development%of%a%
Radioluminescence%Microscope%

!
Guillem!Pratx,!PhD!
Stanford%University%

%
AAPM%Annual%MeeFng%

Nanotechnology%&%Molecular%Imaging%
Thursday,%August%8th,%2013%

Stanford University School of Medicine 
Department of Radiation Oncology 
Division of Radiation Physics 

InterLtumor%heterogeneity%

mulation measured by IHC and p53 mutation detected by
sequencing has been estimated to be less than 75% [28].
The yeast functional assay that we used is robust and is
even more sensitive than direct sequencing [29].

Some explanations can be proposed for the high FDG
uptake in tumours with non-functional p53. Mutations of

p53 were found to impair the repressive effect of p53 on
GLUT1 and GLUT4 gene promoters [30, 31]. Loss of
expression of TIGAR (TP53-induced glycolysis and apo-
ptosis regulator) in non-functional p53 tumours could also
explain high FDG uptake [32]. Finally, a recent (in vitro)
study suggests that abrogation of p53 is associated with

Fig. 4 A 53-year-old woman
with T3 (52 mm) N0 left breast
invasive ductal carcinoma, SBR
grade 1, ER +++ , PR +++,
c-erbB-2−, p53 wild-type.
Tumour SUVmax is 2.5

Fig. 5 A 64-year-old woman
with T4 (extension to chest
wall) N0 invasive ductal
carcinoma measuring 52 mm,
SBR grade 3, triple-negative,
mutated p53. SUVmax of the
tumour is 12.9

432 Eur J Nucl Med Mol Imaging (2011) 38:426–435

mulation measured by IHC and p53 mutation detected by
sequencing has been estimated to be less than 75% [28].
The yeast functional assay that we used is robust and is
even more sensitive than direct sequencing [29].

Some explanations can be proposed for the high FDG
uptake in tumours with non-functional p53. Mutations of

p53 were found to impair the repressive effect of p53 on
GLUT1 and GLUT4 gene promoters [30, 31]. Loss of
expression of TIGAR (TP53-induced glycolysis and apo-
ptosis regulator) in non-functional p53 tumours could also
explain high FDG uptake [32]. Finally, a recent (in vitro)
study suggests that abrogation of p53 is associated with

Fig. 4 A 53-year-old woman
with T3 (52 mm) N0 left breast
invasive ductal carcinoma, SBR
grade 1, ER +++ , PR +++,
c-erbB-2−, p53 wild-type.
Tumour SUVmax is 2.5

Fig. 5 A 64-year-old woman
with T4 (extension to chest
wall) N0 invasive ductal
carcinoma measuring 52 mm,
SBR grade 3, triple-negative,
mutated p53. SUVmax of the
tumour is 12.9

432 Eur J Nucl Med Mol Imaging (2011) 38:426–435

Woman% with% T4% (extension% to% chest% wall)% N0%
invasive% ductal% carcinoma% measuring% 52% mm,%
SBR%grade%3,%tripleLnegaFve,%mutated%p53.%

Woman%with%T3%(52%mm)%N0%leV%breast% invasive%
ductal%carcinoma,%SBR%grade%1,%ER%+++%,%PR%+++,%
cLerbBL2−,%p53%wildLtype.%%

SUV%=2.5%% SUV%=12.9%

Eur$J$Nucl$Med$Mol$Imaging$38:426–435%(2011)%



8/1/13%

2%

The%Standardized%Uptake%Value%

acFvity%in%
the%tumor% mass%of%

the%tumor%

acFvity%in%
the%paFent% mass%of%

the%paFent%

Tumor%

Tracer%Compartmental%Analysis%

Tumor%

FDG%
FDG%FDGL6L%

phosphate%
HK! HK!

K1$

K2$
K3$

K4$



8/1/13%

3%

Intr atumor Heterogeneity Revealed by multiregion Sequencing

n engl j med 366;10 nejm.org march 8, 2012 887

tion through loss of SETD2 methyltransferase func-
tion driven by three distinct, regionally separated 
mutations on a background of ubiquitous loss of 
the other SETD2 allele on chromosome 3p.

Convergent evolution was observed for the 
X-chromosome–encoded histone H3K4 demeth-
ylase KDM5C, harboring disruptive mutations in 
R1 through R3, R5, and R8 through R9 (missense 

and frameshift deletion) and a splice-site mutation 
in the metastases (Fig. 2B and 2C).

mTOR Functional Intratumor Heterogeneity
The mammalian target of rapamycin (mTOR) ki-
nase carried a kinase-domain missense mutation 
(L2431P) in all primary tumor regions except R4. 
All tumor regions harboring mTOR (L2431P) had 
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tion through loss of SETD2 methyltransferase func-
tion driven by three distinct, regionally separated 
mutations on a background of ubiquitous loss of 
the other SETD2 allele on chromosome 3p.

Convergent evolution was observed for the 
X-chromosome–encoded histone H3K4 demeth-
ylase KDM5C, harboring disruptive mutations in 
R1 through R3, R5, and R8 through R9 (missense 

and frameshift deletion) and a splice-site mutation 
in the metastases (Fig. 2B and 2C).

mTOR Functional Intratumor Heterogeneity
The mammalian target of rapamycin (mTOR) ki-
nase carried a kinase-domain missense mutation 
(L2431P) in all primary tumor regions except R4. 
All tumor regions harboring mTOR (L2431P) had 
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Box 2 | Basic concepts of network dynamics

Networks dynamics
A gene regulatory network orchestrates the expression of genes across the genome, generating 
gene expression patterns, or profiles. Thus, each gene expression pattern reflects a state of the 
network. Changes of the network states drive biological processes, such as cell differentiation, by 
controlling the necessary gene expression pattern. Such network dynamics are conveniently 
represented by the state space of the network, in which each point at a given position of that space 
represents a particular network state, hence, a gene expression pattern24. For this conceptual 
illustration, the state space can be imagined as projected onto a two-dimensional plane in which 
each position represents a state. Neighbouring points in this plane represent similar gene 
expression patterns. Changes in gene expression, and hence of the gene expression pattern, then 
translate into the movement of the network state in the state space.

Because of the regulatory interactions, the genes cannot alter their expression independently. 
Instead, gene expression changes are highly constrained such that a given expression pattern will 
change as a whole, moving (or flowing) in a particular state space direction along a trajectory that is 
dictated by the network interactions. If, for instance, gene A and gene B inhibit each other, then all 
expression patterns in which A and B are equally expressed would be highly unstable. For example, 
a slight excess of gene A (so that A>B) would suppress gene B, reducing its own inhibition and, 
hence, promoting its own expression, which further increases the excess of A over B expression. 
This would continue until the network reaches an equilibrium state at A>>B when the expression of 
A cannot increase further owing to other limitations. In general, because of the interactions, most 
network states are unstable. They move in state space seeking to satisfy the regulatory interactions 
or, equivalently, until they find stable equilibrium states. Such stable steady states are also called 
attractor states. They correspond to the gene expression patterns that define the biological cell 
types26,27,71,72 (see the figure).

The epigenetic landscape
For better intuitive conceptualization, each network state in the state space plane can be assigned 
an ‘elevation’ or a quasi-potential energy (that is, the potential), the height of which is inversely 
related to the probability that the network is found in that state, which in turn reflects its stability 
when the system is at equilibrium24,73. The ‘potential’ values over all the states then give rise to a 
quasi-potential landscape. An attractor state is at the bottom of a valley (a potential well), and is 
more likely to be occupied than states in higher areas (the potential hills). Networks seek the lowest 
possible states, much as water drains into valleys. The attracting valleys and repelling hills in the 
state space form the epigenetic landscape2 — a term inspired by Waddington’s famous metaphor 
for the development of cells, which spontaneously adopt discrete phenotypes — akin to marbles 
rolling down hills. A network with many small valleys separated by hills is said to be a rugged 
epigenetic landscape. In physics, rugged potential landscapes are typical for complex systems74,75.
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bacteria, known as persisters, may exhibit 
an increased resistance to penicillin that can 
be inherited, and hence they epitomize the 
contribution of phenotypic variability to 
overall population fitness40,42,45,46. Similarly, 
phenotypic variability in the level of reduced 
glutathione confers resistance to cadmium 
in Saccharomyces cerevisiae populations44.

Mutation-less evolution of malignant traits
The varying cellular response to environ-
mental factors by phenotypic outlier cells 
suggests the following possibility: if slow 
random fluctuations cause certain genes 
to be expressed at abnormally high levels 
over multiple cell generations in an outlier 
cell, and if they encode proteins that, when 
expressed at a higher level, confer a growth 
advantage under some selective conditions, 
then that cell could be selected for — as 
though the advantageous trait were caused 
by a gain-of-function mutation. Even if the 
non-genetic ‘fitter’ state eventually wanes 
after several cell divisions, this may tempo-
rarily expand a fitter subpopulation of cells 
capable of surviving the selective environ-
ment, which itself may also be of limited 
duration. Thus, enduring individuality that 
is due to non-genetic heterogeneity satisfies 
the conditions for Darwinian evolution for 
a limited period of time.

Role of non-genetic heterogeneity in tumour 
evolution. Assume that in a tumour cell 
population, non-genetic heterogeneity 
spreads the expression level of a protein 
among the cells so as to consistently pro-
duce 1% of cells with a high expression of 
the encoding gene at a level that confers the 
ability to survive exposure to a cytotoxic 
drug, at a given dose (FIG. 2). In a small 
non-necrotic early tumour that contains 
~109 cells, as many as 107 cells would always 
survive the treatment regardless of the pres-
ence of genetic variants. To be conservative, 
if only 1% of these 107 cells — that is, 105 
cells — were capable of expansion (the so-
called cancer stem cells), and if these cells 
maintained their transient advantageous 
phenotype for just four cell divisions, there 
would be 1,600,000 surviving cells in the 
presence of the selective environment. This 
‘pre-selection’ of non-genetic variants would 
markedly increase the probability of pro-
ducing a random genetic mutation that may 
provide the basis for the survival capability 
of the original non-genetically variant  
outlier population (FIG. 2).

However, it must be stressed that a  
mutation-less contribution to somatic  
evolution of tumours provided by  

non-genetic heterogeneity neither supports 
nor refutes either side of the long-lasting 
debate about whether genomic instability 
that increases mutation rate is necessary47,48 
or not49 for tumour progression. Instead, we 
have illuminated a neglected but inevitable 

property of cell population dynamics that 
may increase the effectiveness of Darwinian 
selection by stretching the variability of a 
trait by up to several orders of magnitude. 
A role of non-genetic inheritance in evolu-
tion in general has been discussed, but it has 

PERSPECT IVES

NATURE REVIEWS | GENETICS  VOLUME 10 | MAY 2009 | 339

LETTERS

Variability and memory of protein levels
in human cells
Alex Sigal1*, Ron Milo1*{, Ariel Cohen1*, Naama Geva-Zatorsky1, Yael Klein1, Yuvalal Liron1, Nitzan Rosenfeld1,
Tamar Danon1, Natalie Perzov1 & Uri Alon1

Protein expression is a stochastic process that leads to phenotypic
variation among cells1–6. The cell–cell distribution of protein levels
in microorganisms has been well characterized7–23 but little is
known about such variability in human cells. Here, we studied
the variability of protein levels in human cells, as well as the tem-
poral dynamics of this variability, and addressed whether cells
with higher than average protein levels eventually have lower than
average levels, and if so, over what timescale does this mixing
occur. We measured fluctuations over time in the levels of 20
endogenous proteins in living human cells, tagged by the gene
for yellow fluorescent protein at their chromosomal loci24. We
found variability with a standard deviation that ranged, for differ-
ent proteins, from about 15% to 30% of the mean. Mixing between
high and low levels occurred for all proteins, but the mixing time
was longer than two cell generations (more than 40 h) for many
proteins. We also tagged pairs of proteins with two colours, and

found that the levels of proteins in the same biological pathway
were far more correlated than those of proteins in different path-
ways. The persistent memory for protein levels that we found
might underlie individuality in cell behaviour and could set a
timescale needed for signals to affect fully every member of a cell
population.

We asked whether and on what timescale do protein levels mix in
individual human cells. Mixing, in the present context, occurs when a
cell lineage, given enough time, reaches the different states found in a
snapshot of a cell population. Irreversible differences between cells,
such as expected from genetic changes, would lead to cells that retain
their protein state indefinitely without mixing (Fig. 1a, left). Mixing
behaviour (Fig. 1a, middle and right) can be characterized by a typical
timescale tm, called the mixing time, after which cells lose the mem-
ory of their previous protein state. Recent studies using synthetic
protein expression systems in bacteria indicate that cells with

*These authors contributed equally to this work.

1Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100 Israel. {Present address: Department of Systems Biology, Harvard Medical School, Boston,
Massachusetts 02115, USA.
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Figure 1 | Protein level dynamics in individual cells. a, Possible mixing
dynamics of a protein in a population of cells. b, Cells expressing YFP CD-
tagged topoisomerase 1 (TOP1) at different time-points. All cells are the
progeny of the cell shown in the first frame. Scale bar is 25 mm c, TOP1 levels
as a function of time in a cell lineage. Sharp decreases in protein levels
indicate cell-division events and lines originating after each division are the

TOP1 levels of daughter cells. d, TOP1 protein dynamics synchronized to a
cell-cycle time-base using cell division events. Protein levels were normalized
by the average protein level. e, The coefficient of variation (CV 5 s.d./mean)
across the cell cycle of 20 different proteins. f, Distribution of protein levels
measured by flow cytometry for cells at a similar cell-cycle stage, for USP7
(CV 5 0.16) and RPL13A (CV 5 0.28).
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SpaFal%ResoluFon%for%Radionuclide%Imaging%

C.S.$Levin,$et$al.$1999$
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FDG%uptake%in%single%cells%

2.%Fast%(1%h)%&%
incubate%(1%h)%%

3.%Wash%out%&%
image%(5%min)%

1.%Seed%104%4T1%
cells%

5%min%

Overlay%

FDG%(420%μCi/ml)%

FDG%uptake%in%single%cells%

2.%Fast%(1%h)%&%
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Timelapse%imaging%of%FDG%uptake:%Protocol%

Seed%104%MDAL
MBL231%cells%

(24%h)%&%fast%(1%h)% +%FDG%(5%μCi)%

+%FDG%(400%μCi)% wash%out%

T%=%0%h% T%=%8%h%

Influx!

Efflux!

Timelapse:%
10%images%/%h%

5%min%

5%min%

T%=%L1%h%

Uptake%of%FDG%in%live%cells%

Note: Video available on PLOS One
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Tracer%kineFc%modeling:%Influx%

radioluminescence%(Fmelapse,%10%images%/%h)%
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G.$Pratx$et$al.$PLOS$One$2012$

Efflux%of%FDG%from%live%cells%

Note: Video available on PLOS One
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Tracer%kineFc%modeling:%Efflux%

brighrield% radioluminescence%(Fmelapse,%10%images%/%h)%
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G.$Pratx$et$al.$PLOS$One$2012$
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Tissue%SecFon%Imaging:%Zr89LRituximab%in%the%Spleen%

Conclusions%

Radioluminescence% microscopy% is% a% new% imaging% technique%
that%can%sensiFvely%and%quanFtaFvely%characterize%the%uptake%
of% small% molecules% in% heterogeneous% populaFons% of% single%
cells.%
%
We% are% applying% it% to% relate% macroscopic% parameters%
measured% by% PET% to% cellular% parameters% that% are% specific% to%
cellular%funcFon,%disease%state,%and%response%to%therapy.%



8/1/13%

13%

Acknowledgements%

BCRP W81XWH-11-1-0087 NIH 5P50CA114747 ICMIC
  

Equipment loan 

Conroy%Sun%
Laura%Sasportas%
Marian%Axente%
Marta%Colomer%
Colin%Carpenter%
%

Kai%Chen%
Lynn%MarFn%
John%Sunwoo%
Ted%Graves%
Lei%Xing%


