
Imaging in the era of Genomics and Precision Medicine Perspectives of a Clinician Scientist

The history of medicine has been defined by advances born of bioscience. But never before has it been driven to this degree by technology.



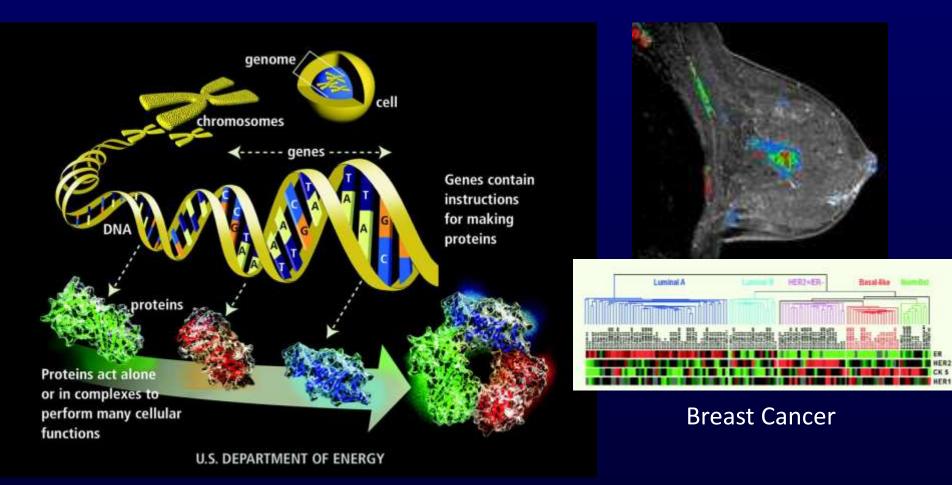
**Oncologic Imaging** *The last 30 years* 

### Cancer Screening

(Ca Breast & Lung)

### Cancer Detection/Localization

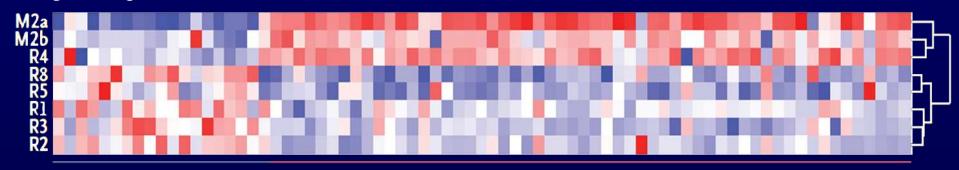
- Treatment Decision
  - Evidence-Based Medicine
- Treatment Planning
  - (Surgery/RTX)
  - Imaging is a Road Map (GPS)
- Treatment Follow-up
  - Monitoring Treatment Response
  - Detection of Tumor Recurrence




### **CT Virtual Laparotomy by Imaging**

### "The AnatomynacturelofcDrr Nicolaes Mulp"culRembrandt, 1632




# Human Genome - Oncology New Horizons



Human Genome (name given by Prof. Winkler in 1920) was sequenced in 2003

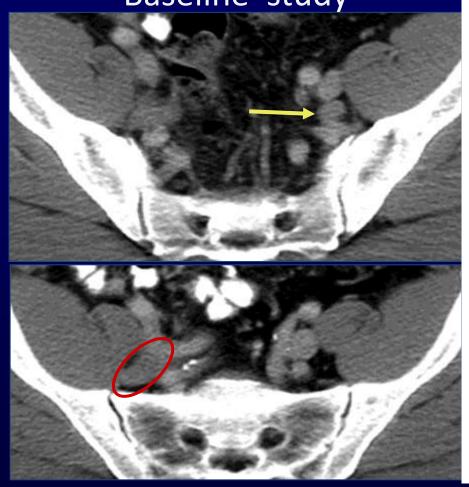
 "Genetic intratumor heterogeneity contributes to treatment failure and drug resistance" \* \*Cancer Genome Atlas Research Network: Nature 2011

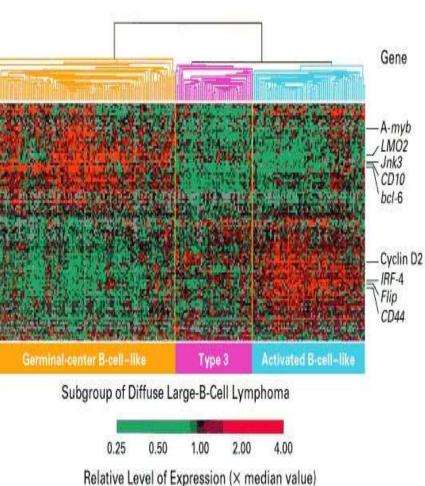
**Prognostic Signature Genes** 



Genes Up-regulated in ccB

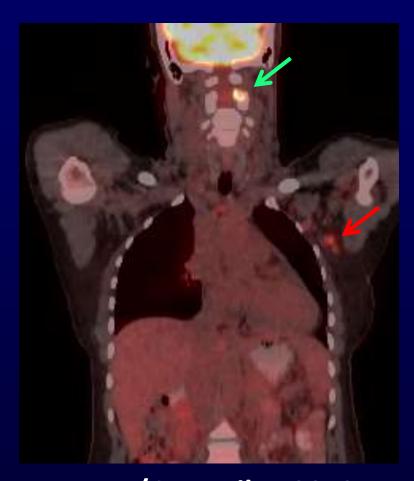
Genes Up-regulated in ccA





z Score

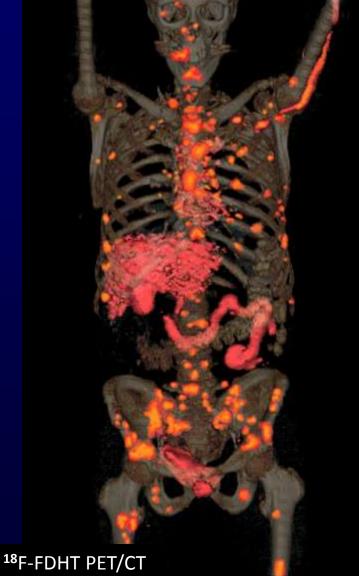
"Intratumor heterogeneity can lead to underestimation of the tumor genomics landscape portrayed from *single tumor-biopsy samples* and may present major challenges to personalizedmedicine and biomarker development."

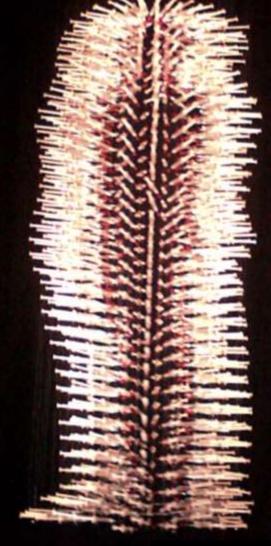
New England Journal of Medicine 366;10 nejm.org march 8, 2012


# Lymphoma: *Treatment Follow-up* Baseline study





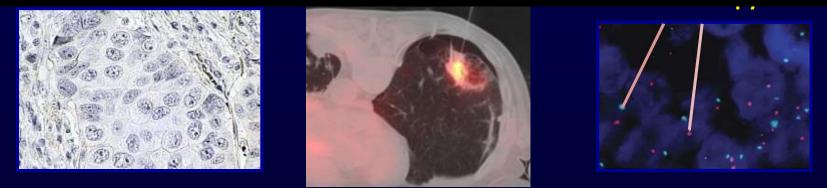

# Mixed Tumor Response


## **Breast Cancer Metastasis:** Treatment Follow-up





PET/CT April 5, 2013 PET/CT July 18, 2013 Mixed Tumor Response Inter- and intra-tumoral heterogeneity - A Major Challenge to Precision Medicine: Can we/should we biopsy each and every lesion lesion?



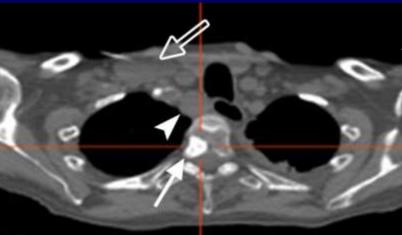



Grace Cathedral, San Francisco



### Tumor Metastasis - De-differentiate (Breast Ca ≤30%) *Predictive/Prognostic Biomarkers for Tumor Metastasis*

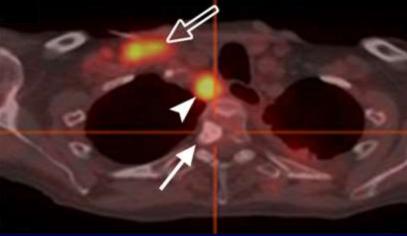



\*Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease: NAS/IOM 2012 Oncology in the Age of Molecular Medicine Predictive, Prognostic & Personalized Precision Medicine\*

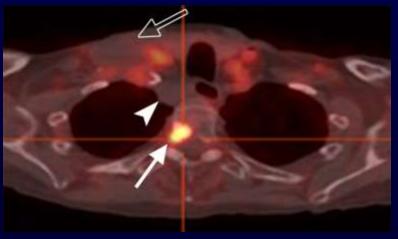
Essential to the success of Precision Medicine Biomarkers (Serum, Tissue or Imaging)

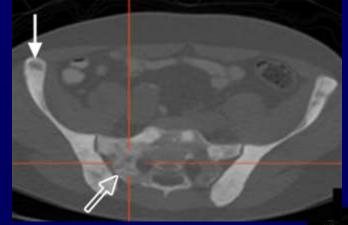
### Predictive Biomarkers

- For therapy selection: identify relative sensitivity or resistance to specific treatments or agents; identify patients where treatment is not required
- Early Response Biomarkers
- Prognostic Biomarkers
  - Inform about an outcome independent of specific treatment


\*Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease: NAS/IOM 2012



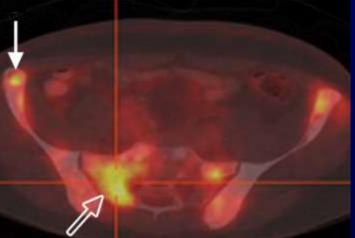

CT


### Precision Medicine – Role of MI Prostate Cancer Revealing Heterogeneous Biology of Tumor Metastasis

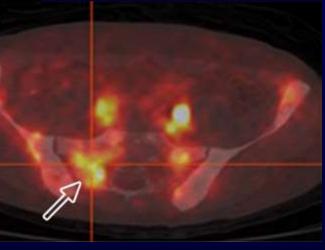
<sup>18</sup>F-FDG PET/CT Glycolysis



### <sup>18</sup>F-FDHT PET/CT Androgen Receptor







### Precision Medicine – Role of MI Prostate Cancer Revealing Heterogeneous Biology of Tumor Metastasis

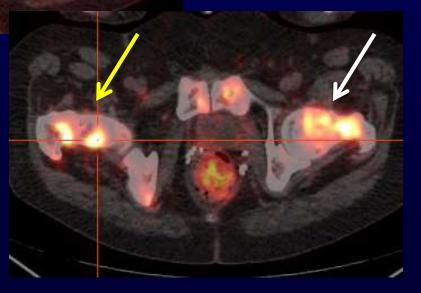


<sup>18</sup>F-FDG PET/CT Glycolysis



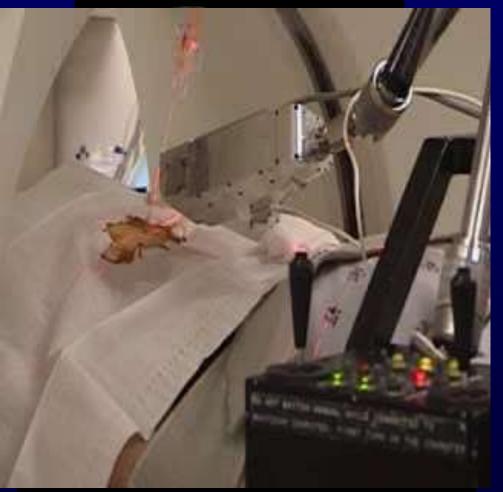
### <sup>18</sup>F-FDHT PET/CT Androgen Receptor






Precision Medicine – Role of MI Prostate Cancer Revealing Heterogeneous Biology of Tumor Metastasis

CT


### <sup>18</sup>F-FDG PET/CT Glycolysis

### Zr-89 J591 PSMA mAb



Lewis: JNM 2010

### **Precision Medicine – MI and image guided Bx** MI & Molecular Pathology - insights into Tumor Biology Breast Cancer Metastasis



<sup>64</sup>Cu Trastuzumab PET/CT

#### Image-guided robotic biopsy

Investigational: MSKCC

# **Technology and Medicine**

"As much as new ideas are fundamental to the advancement of science, technologic innovations are the engine of scientific progress"

> *Shirley Tilghman President, Princeton University*

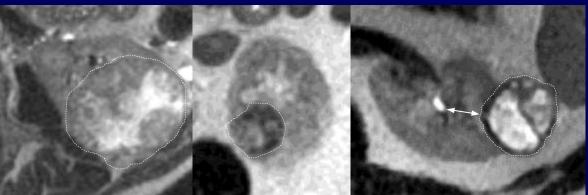
# Radiosynthesis of <sup>11</sup>C compounds ( $T_{\frac{1}{2}} = 20.4$ min)





~1975 - "C-glucose was prepared by photosynthesis. It was extracted from mashed up **Swiss-chard leaves** and a "green solution" was injected into the patient; preparation time ~90 min

2013 - "C-glucose is prepared by a "black box" automated versatile synthesizer producing drugs ready for human use ; preparation time ~45min ~2023- "C-glucose will be prepared by a widely available synthesizer – a 3D printer?

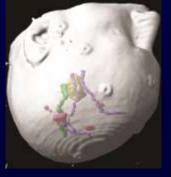

#### Radiopharmaceuticals Produced In-house for the Clinic @ MSKCC (MSKCC IND=25)

| Radiopharmaceutical                    | Imaging Target           | Cancer Site                                     | Human studies          |  |  |  |
|----------------------------------------|--------------------------|-------------------------------------------------|------------------------|--|--|--|
|                                        |                          | Small Molecules (Imaging)                       |                        |  |  |  |
| [ <sup>18</sup> F]-FLT                 | tumor cell proliferation | Lymphoma, prostate, H&N, NSCLC                  | MSKCC IND              |  |  |  |
| [ <sup>18</sup> F]-FES                 | estrogen receptor status | Breast                                          | RDRC/MSKCC IND pending |  |  |  |
| [ <sup>18</sup> F]-FDHT                | androgen receptor        | Prostate                                        | MSKCC IND              |  |  |  |
| [ <sup>18</sup> F]-FMISO               | tumor oxygenation        | Head & Neck, Rectal                             | MSKCC IND              |  |  |  |
| [ <sup>18</sup> F]-FACBC               | amino acid metabolism    | Breast, Prostate, Brain                         | RDRC/ GEMS IND         |  |  |  |
| [ <sup>18</sup> F]-FIAU                | gene expression          | Prostate                                        | MSKCC IND              |  |  |  |
| [ <sup>18</sup> F]-ML10                | imaging apoptosis        | Brain, NSCLC, H&N,                              | Non-MSKCC IND          |  |  |  |
| [ <sup>18</sup> F]-dasatinib           | tyrosine kinases         | Prostate, Breast                                | MSKCC IND              |  |  |  |
| [ <sup>18</sup> F]-glutamine           | tumor metabolism         | All solid malignancies                          | MSKCC IND              |  |  |  |
| [ <sup>64</sup> Cu]-ATSM               | tumor oxygenation        | Uterine Cervix, Rectal                          | ACRIN                  |  |  |  |
| [ <sup>124</sup> I]-IAZGP              | tumor oxygenation        | Rectal                                          | MSKCC IND              |  |  |  |
| [ <sup>124</sup> I]-FIAU               | gene expression          | Prostate                                        | MSKCC IND              |  |  |  |
| Na-[ <sup>124</sup> I]                 | Na lodide Symporter      | Thyroid                                         | MSKCC IND              |  |  |  |
| [ <sup>124</sup> I]-PUH71              | HSP-90                   | All solid malignancies and lymphoma             | MSKCC IND              |  |  |  |
|                                        | Aı                       | ntibodies and Fragments (Imaging)               |                        |  |  |  |
| [ <sup>68</sup> Ga]- Her2 F(ab')       | HER2                     | Breast                                          | MSKCC IND              |  |  |  |
| <sup>64</sup> Cu-DOTA-trastuzumab      | HER2                     | Breast                                          | MSKCC IND              |  |  |  |
| [ <sup>124</sup> I]-A33                | A33 antigen              | Colon                                           | MSKCC IND              |  |  |  |
| [ <sup>124</sup> I]-3F8                | disialoganglioside GD2   | Neuroblastoma (pediatrics)                      | MSKCC IND              |  |  |  |
| [ <sup>124</sup> I]-8H9                | 8H9 antigen              | Multiple tumors e.g. Leptomeninges (pediatrics) | MSKCC IND              |  |  |  |
| [ <sup>124</sup> I]-G250               | CA9 antigen              | Renal                                           | MSKCC IND              |  |  |  |
| [ <sup>89</sup> Zr]-DFO-huJ591         | PSMA                     | Prostate                                        | MSKCC IND              |  |  |  |
| [ <sup>89</sup> Zr]-Trastuzumab        | HER2                     | Breast                                          | MSKCC IND pending      |  |  |  |
| [ <sup>89</sup> Zr]-DFO-MSTP2109A      | PSMA                     | Prostate                                        | MSKCC IND              |  |  |  |
| <sup>89</sup> Zr-Df-IAB2M              | PSMA                     | Prostate                                        | ImaginAb/MSKCC IND     |  |  |  |
| <sup>111</sup> In-DOTA-cG250           | CA9 antigen              | Renal                                           | LICR IND               |  |  |  |
|                                        | Ar                       | ntibodies and Fragments (Therapy)               |                        |  |  |  |
| <sup>90</sup> Y-DOTA-cG250             | CA9 antigen              | Renal                                           | LICR IND               |  |  |  |
| <sup>131</sup> I-8H9                   | 8H9 antigen              | Multiple tumors e.g. Leptomeninges (pediatrics) | MSKCC IND              |  |  |  |
| <sup>131</sup> I-3F8                   | disialoganglioside GD2   | Neuroblastoma (pediatrics)                      | MSKCC IND              |  |  |  |
| <sup>225</sup> Ac-lintuzumab           | Anti-CD33                | Acute Myeloid Leukemia                          | MSKCC IND              |  |  |  |
|                                        |                          | Nanoparticles (Imaging)                         |                        |  |  |  |
| [ <sup>124</sup> I]-Cdot nanoparticles | ανβ3                     | Melanoma                                        | MSKCC IND              |  |  |  |
|                                        |                          |                                                 |                        |  |  |  |

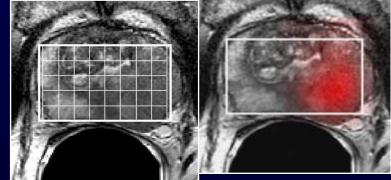
# MR Technology Powerful and Versatile Modality – still not fully explored

MR Imaging Spin Echo (T1&T2) DWI IVIM CE-MRI <sub>f</sub>MRI

### **MR Spectroscopic Imaging**




#### C.A. Karlo et al: RCC – MVBI Radiology 2013


• <sup>1</sup>H

PRESS- CSI STEAM- CSI Modified/novel sequences

- Multinuclear MRSI (<sup>31</sup>P etc.)
- DNP-MR (<sup>13</sup>C, etc.)

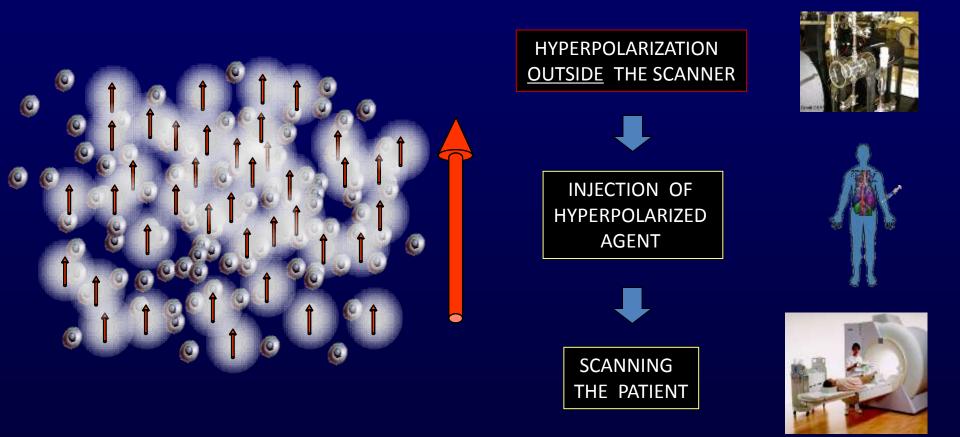


<sub>f</sub>MRI



1 20 81

PCa MRI & MRSI


### Integrated Diagnostics Prostate Cancer: MRI/MRSI and Immunohistochemistry



Ki-67 and pAkt (Prognostic Biomarkers of Prostate Cancer aggressiveness) significantly correlate with MRI/MRSI

Shukla-Dave, Hricak, Cordon-Cordo et al, Radiology, 2009

### Hyperpolarized <sup>13</sup>C MR Boosting MR sensitivity

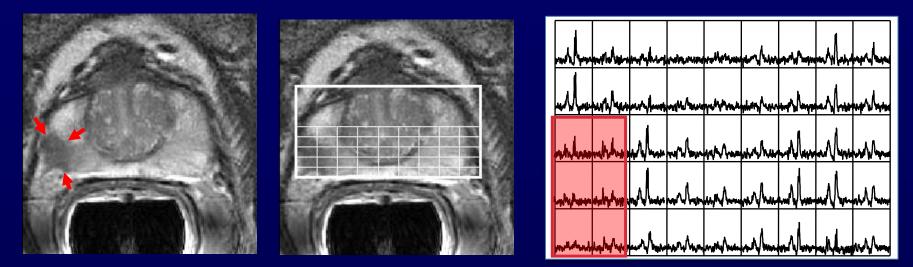


<sup>13</sup>C is a stable (non-radioactive) and magnetically active isotope of carbon <sup>13</sup>C has a low natural abundance of 1.1%

<sup>13</sup>C molecules can be chemically synthesized (<sup>12</sup>C atom is replaced by a <sup>13</sup>C atom)

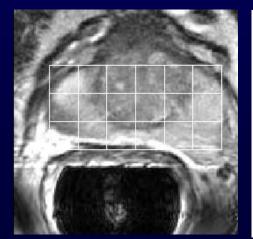
# Hyperpolarized <sup>13</sup>C MR

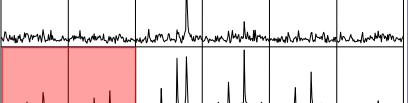
<sup>13</sup>C labeled substrates and their metabolic products allow for *tumor detection, assessment of tumor aggressiveness and early treatment response. Unique way to noninvasively monitor tumor metabolism in patients* 




### Lymphoma - 20 h Treatment Response to Etoposide

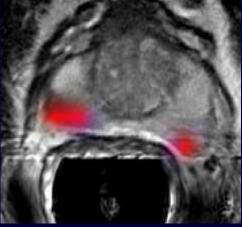
<sup>13</sup>C-labelled Pyruvate to Lactate Conversion


Day et al. Nature Medicine 2007


### **3D Hyperpolarized <sup>13</sup>C MRSI** – First in human clinical trial

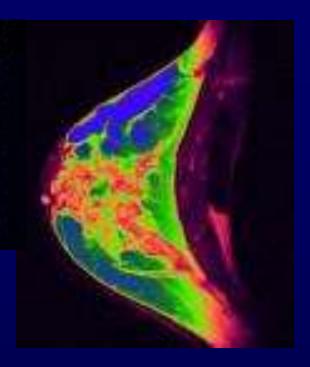


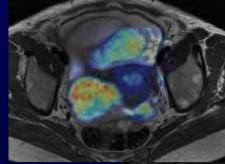
PSA of 4.58 ng/ml, biopsy proven bilateral cancer

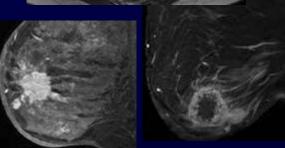

(Gleason 3+3, 8/12 cores). MRI & MRSI abnormality in right PZ but no lesion seen on the left.



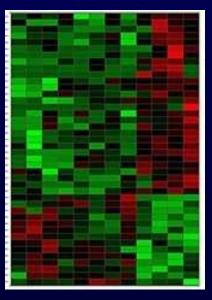






and have been have more thank the way have have have been and when have have have been and the have have been a second and have been a se



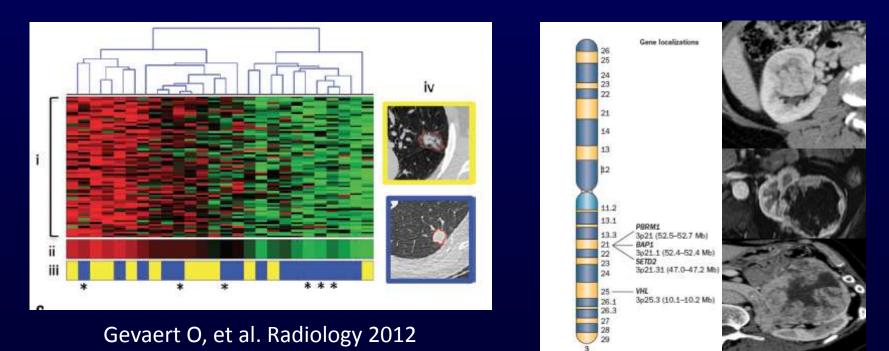

Hyperpolarized <sup>13</sup>C Pyruvate MRSI demonstrates both Bx & surgery proven lesions Courtesy: J Kurhanewicz UCSF; Nelson et al. Sci Trans Med 2013





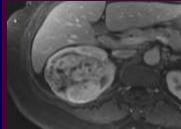


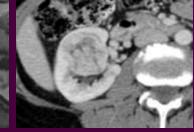




# Radiogenomics From Phenotype to Genotype

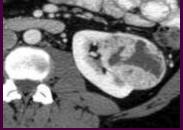




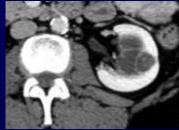

# **Radiogenomics:** *Linking Imaging to Genotype*

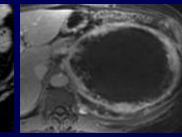

- Evolving research field to establish a bridge between diagnostic imaging and the underlying gene expression patterns
- Pilot studies: GBM, HCC, Breast Ca, Lung Ca & Kidney Ca

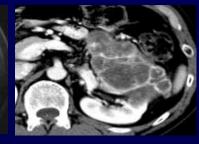



Karlo C, et all: Radiology 2013

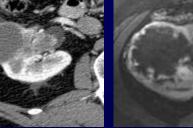
# **Clear Cell RCC:** *Phenotypic Heterogeneity*

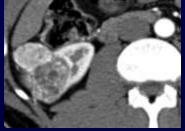


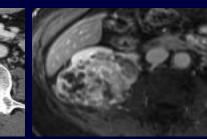



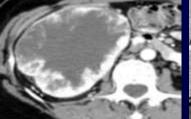


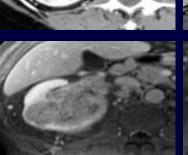



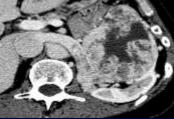



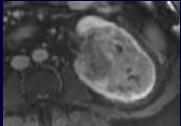


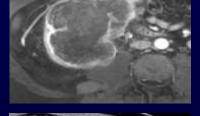
















# **Radiogenomics** CT Imaging as a Biomarker – RCC (N=232)



VHL (3p25.3) SETD2 (3p21.31) PBRM1 (3p21.1) BAP1 (3p21.1) Newly discovered mutations in clear-cell RCC

Chromosome 3 Map

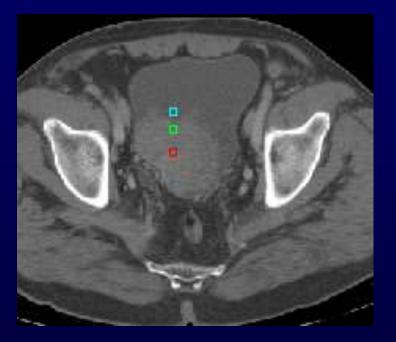
p25.1 |025.3 |p25.4 |p24.3

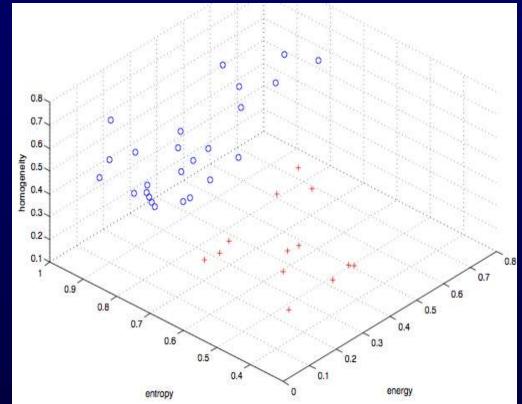
p24.1 p22.3 p22.2 p22.1 p22.1

p14.3

1014.5 1014.

|                   |                        | 1000 |                  |    |
|-------------------|------------------------|------|------------------|----|
| *                 | -6                     |      | - 757            | 55 |
| 11                | 0                      | 1    | 5                |    |
|                   | 1                      |      |                  |    |
|                   | 19                     |      |                  |    |
| 10                | 1                      |      |                  | ē. |
| 12                |                        | 12.0 |                  | Ź  |
|                   | -                      |      |                  |    |
| and shares in the | COLUMN AND DESCRIPTION | Ca   | 10 <sup>-1</sup> |    |

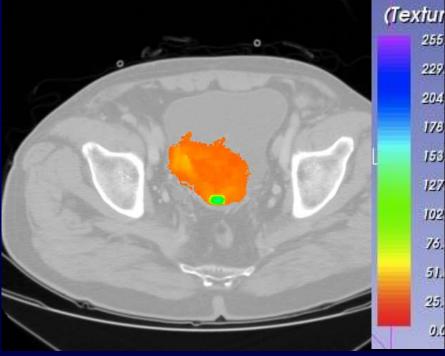

| CT Parameter                        | VHL   | PBRM1 | BAP1  | SETD2 | KDM5C |
|-------------------------------------|-------|-------|-------|-------|-------|
| Renal Vein Invasion                 | 0.194 | 1.000 | 0.030 | 0.391 | 0.030 |
| Lobulated Tumor Enhancement Pattern | 0.166 | 0.010 | 1.000 | 0.743 | 0.747 |
| Low Nephrographic Phase Enhancement | 0.737 | 0.394 | 0.101 | 0.023 | 0.445 |
| Collecting System Invasion          | 0.031 | 1.000 | 0.059 | 0.168 | 0.209 |


C. A. Karlo et al: Radiogenomics of clear-cell renal cell carcinoma: Associations between CT imaging features and mutations; Radiology 2013

# **Radiogenomics:** *Discovery Phase*

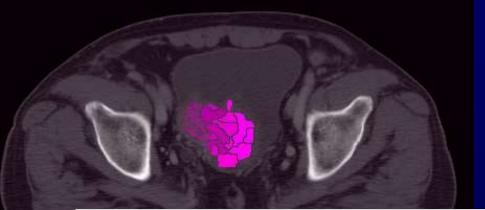
- To identify/validate prognostic imaging biomarkers by leveraging imaging and genomic data.
- Pilot Study Methods:
- **Histo pathology** (e.g. tumor size, grade, stage)
- Clinical outcome (e.g. time-to-recurrence, survival)
- Genomic data/Imaging features correlation
  - Imaging
    - CT or MRI qualitative/observational imaging features
    - Quantitative analysis Texture analysis of CT/MRI
    - Functional parameters ADC, IVIM etc
    - Clusters of multiparametric data

### **Bladder Cancer:** *Texture Analysis & Radiogenomics*






Cluster analysis showing difference in bladder cancer texture that can not be appreciated visually on the CT image Courtesy: Harini Veeraraghavan, MSKCC

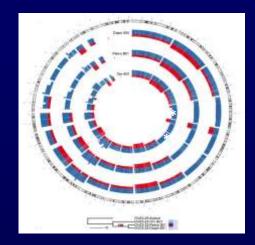

### **Bladder Cancer**:

#### Computing Additional Statistics – Energy (medium scale)



Statistics calculated for the different energy levels computed as segments

#### **Courtesy: Harini Veeraraghavan, MSKCC**



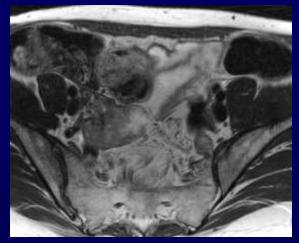


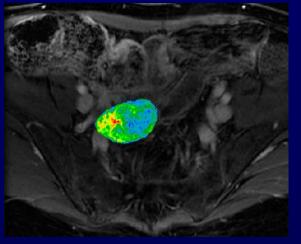
|   | A     | В      | С      | D        | E        | F           |
|---|-------|--------|--------|----------|----------|-------------|
|   | Label | Mean   | Median | Kurtosis | Skewness | Volume(pix) |
| - | 2     | 27.667 | 27.5   | 1.617    | 0.011    | 18          |
|   | 3     | 28.048 | 29     | 1.8      | -0.222   | 21          |
| - | 4     | 32.744 | 33     | 1.931    | 0.085    | 43          |
|   | 5     | 35.238 | 35     | 1.667    | -0.46    | 21          |
|   | 6     | 29.553 | 29     | 2.163    | 0.464    | 374         |
|   | 7     | 25.18  | 25     | 2.076    | 0.39     | 61          |
|   | 8     | 34.429 | 34.5   | 2.489    | 0.433    | 14          |
|   | 9     | 11.5   | 11.5   | 1        | 0        | 2           |
|   | 10    | 30.8   | 31     | 1.847    | 0.344    | 5           |
|   | 11    | 25.278 | 25     | 2.106    | -0.249   | 237         |
|   | 12    | 25.504 | 25     | 2.322    | 0.53     | 123         |
|   | 13    | 23.116 | 23     | 2.255    | -0.066   | 181         |
|   | 14    | 23.472 | 23     | 2.425    | 0.728    | 36          |
|   | 15    | 22.179 | 23     | 24.305   | -4.728   | 28          |
|   | 16    | 26.839 | 27     | 2.183    | 0.146    | 56          |
|   | 17    | 24.133 | 24     | 1.851    | 0.356    | 173         |
|   | 18    | 23.683 | 23     | 2.842    | 0.784    | 104         |
|   | 19    | 74.458 | 83     | 1.511    | -0.008   | 216         |
|   | 20    | 23.778 | 24     | 2.466    | 0.455    | 36          |
|   | 21    | 21     | 23     | 10.835   | -3.11    | 39          |
|   | 22    | 27.435 | 27     | 1.843    | 0.196    | 216         |
|   | 23    | 22.851 | 23     | 2.756    | 0.374    | 282         |
|   | 24    | 24.474 | 24     | 2.257    | 0.377    | 95          |

## **Radiogenomics:** *Ovary Cancer*

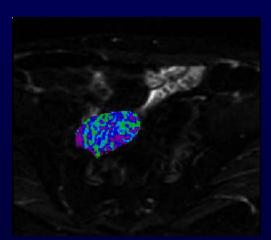


Phenotypic heterogeneity associated with histological and/ or genomic heterogeneity in HGSOC



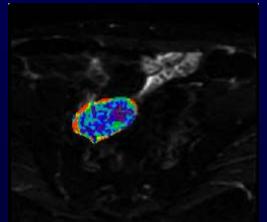

#### **Integrated Diagnostics in Ovarian Cancer**


Schwarz R, Ng CKY, Cooke SL, Newman S, Temple J, Piskorz AM, Gale D, Sayal K, Murtaza M, Baldwin P, Rosenfeld N, Earl HM, Sala E, Jimenez-Linan M, Parkinson1 CA, Markowetz F, Brenton JD. Quantification of intra-tumor heterogeneity predicts time to relapse in high-grade serous ovarian cancer. *in review* 

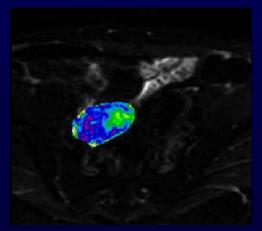
### **MRI - IVIM: Ovarian Cancer Tumor Heterogeneity**






T2WI

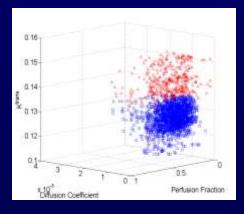


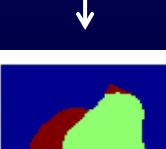

D\* (pseudo-diffusion)

CE map (DCE-MRI)

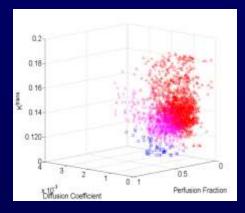
ADC map

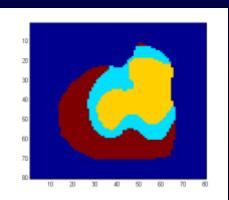



f (perfusion fraction)



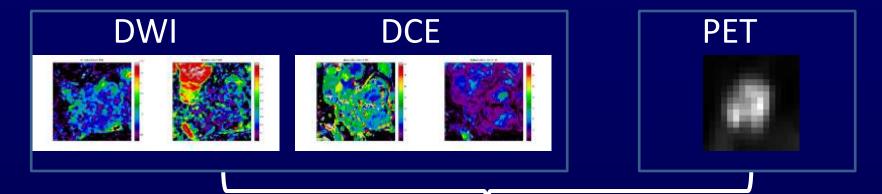

D (diffusion map)


IVIM Parameter map (biexponential diffusion model)

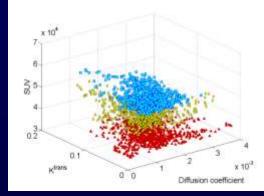

# K-means Unsupervised Cluster Analysis2 clusters3 clusters

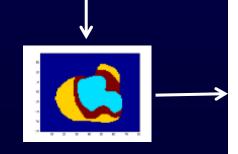


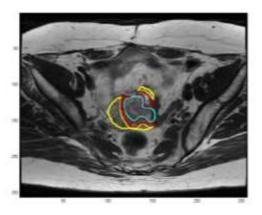








### **Courtesy: Yousef Mazaheri MSKCC**


# **Multi-parametric MRI/PET Imaging**



Using multiparametric image clusters (incorporating IVIMbased modelling) to guide tumor sampling for genomic sampling







**Courtesy: Yousef Mazaheri, MSKCC** 

# **Convergent Evolution**

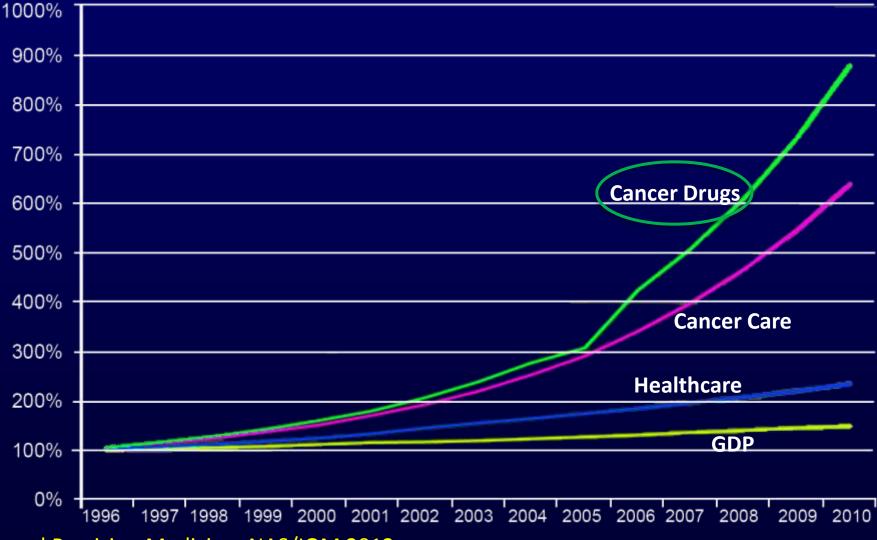


YA





# Why Radiogenomics?

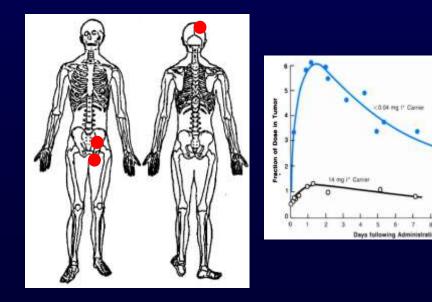

- Cancer is the most Genetically Heterogeneous Disease undergoing continuous evolution (Darwinian Dynamics)
  - Primary Tumors are Spatially and Temporally Heterogeneous
  - Metastasis de-differentiate in up to 50% of cancers and demonstrate different biologic features in different matrices (bone vs. liver vs. lung)
- Precision Biopsy
  - Radiogenomic data from spatial and temporal mapping of tumor regions may replace the need for multiple repeated biopsies
- Biomarkers
  - Prognostic and Predictive Biomarker Non-Invasive
  - *Early Response Biomarker* imaging detects heterogeneity in response (versus a serum response biomarker like PSA or CA125)
  - Pharmacodynamics imaging demonstrates readout pathway activation –which cannot be answered by labeling the drug

**Oncologic Imaging – the Next 10 Years** *Unprecedented Convergence of the Life Science, Physical Science and Engineering* 

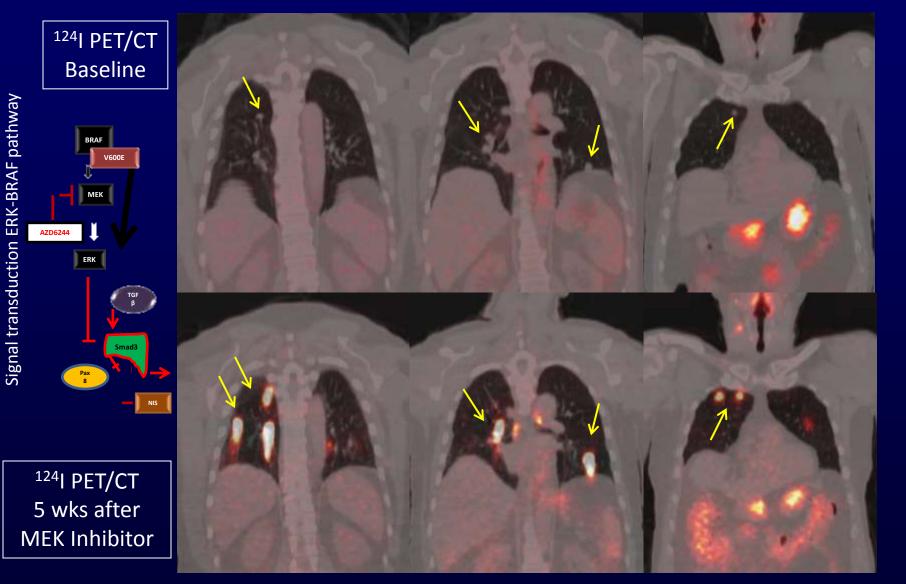
- Imaging Tumor Biology development of probes to interrogate in-vivo tumor biology
- Molecular Precision with Image-guided IR
- Integrated Diagnostics convergence of "omics," molecular pathology, laboratory medicine & imaging as essential driving forces in precision medicine
- Theranostics & Pharmacodynamics



# **Cost of Cancer Care in the U.S.**

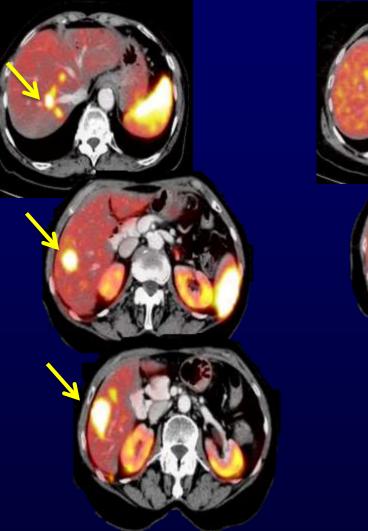



Toward Precision Medicine: NAS/IOM 2012

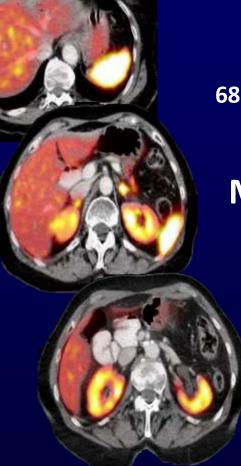

# **Nuclear Medicine** *Molecular Imaging and Therapy*

The earliest documented use of Nuclear Medicine was **1946** when radioactive iodine, via an *"atomic cocktail,"* was first used to treat thyroid cancer

Radioactive Iodine Therapy: Effect On Functioning Metastases of Adenocarcinoma of the Thyroid Seidlin, Marinelli, Oshry. JAMA 1946




<sup>131</sup>I Refractory Metastatic Thyroid Cancer: <sup>124</sup>I scan as a Predictive Biomarker in selecting patients for <sup>131</sup>I therapy following MEK inhibitor (AZD6244)



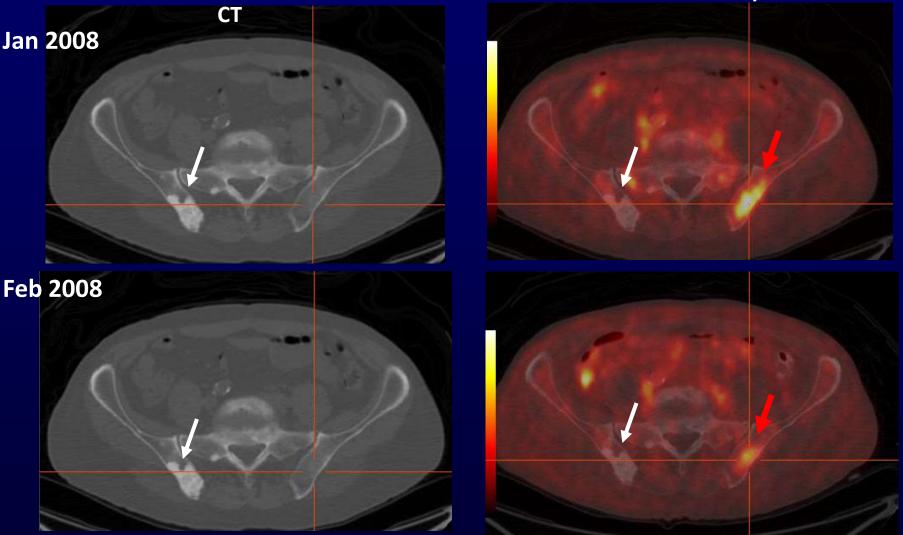

J. Fagin at al: NEJM 2013

### **Theranostics:** Targeted Imaging & Radio-Immunotherapy



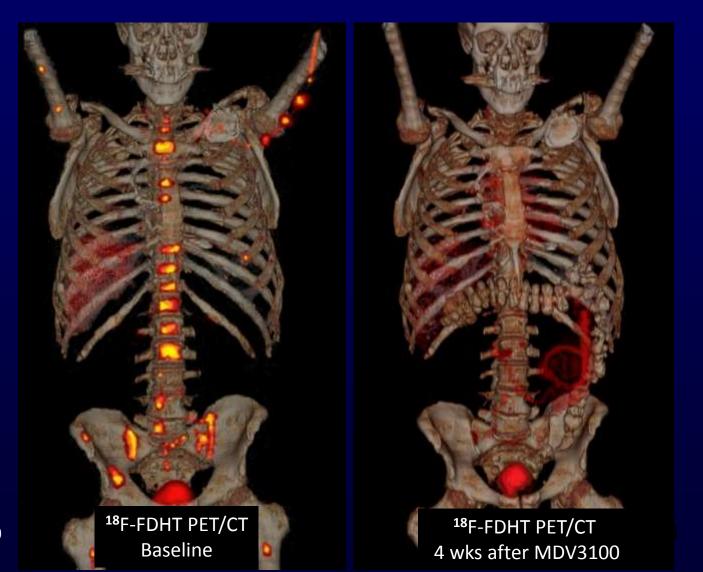
**Before therapy** 




<sup>68</sup>Ga-DOTATATE – PET/CT Metastatic NET

Courtesy: W. Weber

After Lutetium-177 (<sup>177</sup>Lu) DOTA-TATE


### **Theranostics:** *Targeted Imaging & Targeted Therapy*

<sup>18</sup>FDHT PET/CT



Therapy © Androgen Receptor Inhibitor: good AR treatment response

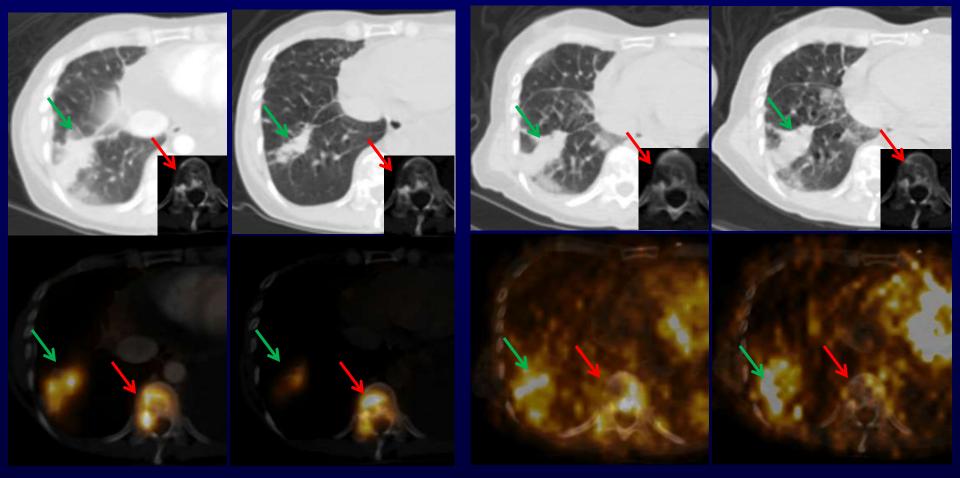
**Theranostics:** <sup>18</sup>F-FDHT PET/CT: Predictive and Targeted Response Biomarker in patients with metastatic prostate cancer considered for therapy with an androgen receptor antagonist (e.g. MDV3100)





Lancet 2010

# **Theranostics**


<sup>18</sup>FDG PET/CT 19 days

after STA-9090 TX

#### <sup>18</sup>FDG PET/CT Baseline

#### <sup>124</sup>I-PUh71 PET/CT 20 min post inj.

<sup>124</sup>I-PUh71 PET/CT 21 hrs. post inj.



48 year old female with breast cancer metastatic to lungs and bones; Hsp90-targeted therapy (STA-9090), induced partial response in lung mass (^) but progression in spinal lesion (^); <sup>124</sup>I-PUh71 shows uptake and retention in the lung lesion but clearance from spinal bone metastasis.

Investigational MSKCC: M. Dunphy & G. Chiosis



Rene Magritte – "La Clairvoyance" (1936)

# **Technology and Medicine**

"As much as new ideas are fundamental to the advancement of science, technologic innovations are the engine of scientific progress"

> *Shirley Tilghman President, Princeton University*

We are witnessing unprecedented Convergence of the Life Science, Physical Science and Engineering