

A Simple Model-Driven Approach

- Forward Model $\overline{y}(\mu) = I_0 \exp(-\mathbf{A}\mu)$
- o Objective and Estimator

$$\hat{\mu} = \arg\min\left\|y - \overline{y}(\mu)\right\| \quad \hat{\mu} \cong \arg\min\left\|-\log\left(\frac{y}{I_0}\right) + \mathbf{A}\mu\right\|$$
$$\hat{\mu} = \arg\min\left\|\mathbf{A}\mu - l\right\|^2 = \left[\mathbf{A}^T \mathbf{A}\right]^{-1} \mathbf{A}^T l$$

Projection-Backprojection Backprojection

o For a squared-distance metric

- Many possible algorithms
- Can be equivalent to ART, which seeks $A\mu = l$

Flexibility of Iterative Methods

$$\hat{\boldsymbol{\mu}} = \arg\min \|\mathbf{A}\boldsymbol{\mu} - \boldsymbol{l}\|^2 = [\mathbf{A}^T\mathbf{A}]^{-1}\mathbf{A}^T\boldsymbol{l}$$

• For a well-sampled, parallel beam case

$$\mathbf{A}^{T}\mathbf{A}x \approx \frac{1}{r} * x \quad \rightarrow \quad \left[\mathbf{A}^{T}\mathbf{A}\right]^{-1} x \approx F^{-1}\left\{\left|\boldsymbol{\rho}_{2D}\right|\right\} * x$$

o For other cases

$$\begin{bmatrix} \mathbf{A}^T \mathbf{A} \end{bmatrix}^{-1} \mathbf{A}^T l$$

o Iterative methods implicitly handle the geometry

- Find the correct inversion for the specific geometry
- Cannot overcome data nullspaces (needs complete data)

Maximum Likelihood Estimation

• Find the parameter values most likely to be responsible for the observed measurements.

o Likelihood Function

$$L(y;\mu) = p(y_1, y_2, ..., y_N | \mu_1, \mu_2, ..., \mu_M)$$

o Maximum Likelihood Objective Function

$$\hat{\mu} = \arg \max L(y; \mu)$$

ML for Tomography Need a noise model Depends on the statistics of the measurements Depends on the detection process Depends on the detection process Common choices Poisson - x-ray photon statistics $y_i \sim \text{Poisson}\{\bar{y}_i(\mu)\} \qquad P_{y_i} = \exp[-\bar{y}_i(\mu)] \frac{[y_i(\mu)]^{y_i}}{y_i!}$ Poisson-Gaussian mixtures - photons + readout noise $y_i \sim \text{Poisson}\{y_i(\mu)\} + N[0, \sigma_{ro}^2]$ Gaussian (nonuniform variances) - approx. many effects $y_i \sim N\{\bar{y}_i(\mu), \sigma_i^2\} \qquad P_{y_i} = \frac{1}{\sqrt{2\pi\sigma_i^2}} \exp\left(-\frac{1}{2\sigma_i^2}(y_i - \bar{y}_i(\mu))^2\right)$

Gaussian Likelihood Function

o Marginal Likelihoods

$$l_{i} = -\log\left(\frac{y_{i}}{I_{0}}\right) \quad p(l_{i} \mid \mu) = \frac{1}{\sqrt{2\pi\sigma_{i}^{2}}} \exp\left[-\frac{1}{2\sigma_{i}^{2}}\left(l_{i} - \left[\mathbf{A}\mu\right]_{i}\right)^{2}\right]$$

o Likelihood

$$L(l \mid \mu) = p(l \mid \mu) = \prod_{i=1}^{N} p(l_i \mid \mu) = \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma_i^2}} \exp\left[-\frac{1}{2\sigma_i^2} (l_i - [\mathbf{A}\mu]_i)^2\right]$$

$$\log L(l \mid \mu) \cong \sum_{i=1}^{N} -\frac{1}{2\sigma_i^2} \left(l_i - \left[\mathbf{A} \mu \right]_i \right)^2$$

• Objective Function and Estimator $\hat{\mu} = \arg \max \log L(l \mid \mu) = \left[\mathbf{A}^T \mathbf{D} \left[\frac{1}{\sigma_i^2} \right] \mathbf{A} \right]^{-1} \mathbf{A}^T \mathbf{D} \left[\frac{1}{\sigma_i^2} \right] l$

Iterative Algorithms

o Plethora of iterative approaches

- Expectation-Maximization General Purpose Methodology
- Gradient-based Methods Coordinate Ascent/Descent
- Optimization Transfer Paraboloidal Surrogates
- Ordered-Subsets methods
- o Properties of iterative algorithms
 - Monotonicity
 - True convergence
 - Speed
 - Complexity

Statistical Reconstruction Example

o Test Case

- Single slice x-ray transmission problem
- 512 x 512 0.3 mm volume
- 400 detector bins over 180 angles (360 degrees)
- Poisson noise: 1e5 counts per 0.5 mm detector element
- SO: 380 mm, DO: 220 mm

o Reconstruction

- Voxel basis: 512 x 512 0.3 mm voxels
- Maximum-likelihood objective
- EM-type algorithm
- Initial image constant value
- Lots of iterations

Local Control of Image Properties

o Pairwise Penalty

• Penalize the difference between neighboring voxels

$$R(\mu) = \sum_{j} \sum_{k \in N} w_{jk} \psi(\mu_{j} - \mu_{k})$$

$$k_{1st} = \begin{bmatrix} -1 & -1 \\ -1 & 4 \end{bmatrix} k_{2nd} = \begin{bmatrix} -1 & -1 & -\frac{1}{\sqrt{2}} \\ -1 & 4 + \frac{4}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & -1 \end{bmatrix} = \begin{bmatrix} -1 & -\frac{1}{\sqrt{2}} \\ -1 & 4 + \frac{4}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} -1 & -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} -1 & -\frac{1}{$$

o Quadratic Penalty

$$R(\mu) = \sum_{j} \sum_{k \in N} w_{jk} \left(\mu_{j} - \mu_{k}\right)^{2}$$

Penalized-Likelihood Example

Forward Model

- Fan-beam Transmission Tomography
- 512 x 512 0.3 mm volume
- 400 detector bins over 180 angles (360 degrees)
- Poisson: {1e4,1e3} counts per 0.5 mm detector element
- SO: 380 mm, DO: 220 mm

o Objective Function

- Poisson Likelihood
- Quadratic, first-order Penalty

o Algorithm

- Separable Paraboloidal Surrogates
- 400 iterations well-converged

Other Penalties/Energy Functions

$$R(\boldsymbol{\mu}) = \sum_{j} \sum_{k \in \mathbf{N}} w_{jk} \psi(\mu_j - \mu_k)$$

o Quadratic penalty

- Tends to enforce smoothness throughout image
- Increasingly penalizes larger pixel differences

o Non-quadratic penalties

- Attempt to preserve edges in the image
- Once pixel differences become large allow for decreased penalty (perhaps a relative decrease)

o Flexibility: Even more penalties

• Wavelets and other bases, non-local means, etc.

Closer Look at Image Properties

o Test Case

- Single slice x-ray transmission problem
- 480 x 480 0.8 mm volume
- 1000 detector bins over 360 angles (360 degrees)
- Poisson noise: 1e5 counts / 0.76 mm detector element
- SO: 600 mm, DO: 600 mm

Reconstruction

- Penalized-likelihood objective
- Shift-Invariant Quadratic Penalty
- Separable paraboloidal surrogates
- 200 iterations
- Voxel basis: 480 x 480 0.8 mm voxels

DESCRIPTION OF CONTROL OF CONTROL

Learning Objectives I

o Fundamentals of iterative methods

- Approach to forming an iterative algorithm
 - Forward Model
 - Objective Function
 - Optimization Algorithm

Identify particular classes of methods

- Model-based vs. Image Denoising approaches
- Statistical vs. Nonstatistical approaches
- Kinds of regularization

Learning Objectives III

o Images produced by iterative methods

- Differences from traditional reconstruction
 - Regularization is key
 - Image properties are tied to statistical weighting
 - Can depend on algorithm when iterative solution has not yet converged
- Image properties associated with iterative reconstruction
 - Highly dependent on regularization
 - Data- and object dependent
 - Shift-variant; different noise, texture than FBP

Acknowledgements

I-STAR Laboratory

Imaging for Surgery, Therapy, and Radiology www.jhu.edu/istar

Faculty and Scientists

Jeff Siewerdsen Yoshito Otake Sebastian Schafer Adam Wang Wojtek Zbijewski

BME Students

Hao Dang Grace Gang Sajendra Nithiananthan Steven Tilly II Jennifer Xu

CS Students

Sureerat Reaungamornrat Ali Uneri

Hopkins Collaborators

<u>School of Medicine</u> John A Carrino (Radiology)

Gary Gallia (Neurosurgery) A Jay Khanna (Orthopaedic Surgery) Martin Radvany (Interventional Neuroradiology) Doug Reh (Oto H&N Surgery) Mahadevappa Mahesh (Radiology) Marc Sussman (Thoracic Surgery)

School of Engineering

Greg Hager (CS) Junghoon Lee (CS) Jerry Prince (ECE) Russell Taylor (CS)

Support

National Institutes of Health Carestream Health Varian Medical Systems