Radiofrequency Coil Quality Control

Donna M. Reeve, MS, DABR, DABMP Department of Imaging Physics

Educational Objectives

- Describe different approaches to performing RF coil quality control testing
- Discuss methods of measuring SNR
- Describe the influence of phantoms, acquisition parameters and post-processing on SNR results
- Recommend information to include in the coil QC record

Outline

- Purpose of coil QC
- How to perform coil QC
 - Manufacturer/MR system vendor guidance
 - SNR measurement methods
 - Automated and manual methods
 - · Phased-array coils and uniformity correction
 - Phantoms
- Factors that will affect results
- What to include in the report
- Challenges

RF Coil QC - purpose

RF coils are a critical component of the MR imaging system. Quality control of RF coils is important:

- To ensure acquisition of high quality diagnostic MR images by ensuring good coil performance
- To catch coil problems before they affect clinical scans
- To troubleshoot clinical image quality problems
- As part of a comprehensive MRI quality assurance program
- Required for ACR accreditation (breast MRI or MRI)

RF Coil Quality Control

- Coil inspection
- Measurement of signal-to-noise ratio (SNR)
- Measurement of signal uniformity for volume coils
- Phased array coils: evaluate SNR for individual channels
- New coils: establish baseline coil performance in order to monitor coil performance over time.
- Existing coils: Compare SNR results to baselines and/or vendor specifications
- Artifact evaluation (including ghosting)

Coil QC Procedure

- May be provided by coil or MR system manufacturer
 - On-system guidance during automated testing
 - Coil User or Service Manual
- Position of phantom, coil
- Coil configurations, where to landmark
- Pulse sequence and scan parameters
- May include pass/fail SNR limits
 - Lower limit
 - May not provide an upper limit
- May not provide any limits: "Establish baseline and monitor over time"

Coil QC Procedure

If vendor guidance is not available

- Use a basic coil QC procedure
 - Spin echo, FSE, GRE
 - Clinically relevant FOV and image orientation
 - If possible acquire images using individual channels
 - Test available coil configurations
- Choose an SNR method to use
- Establish baseline SNR for future comparisons

Surface Coils

- Surface coils
 - Highest signal close to body, rapid signal drop-off with depth
- Smaller coils record less noise, higher SNR than larger coils, but sensitive to smaller anatomical volume
- Larger coils lower SNR, sensitive to larger anatomical volume

Volume Coils

- Volume coils
 - Designed to provide uniform RF field, uniform signal within coil
 - ACR requires uniformity and ghosting measurements

Phased array coils

- Multiple small coil elements, independent receiver channels (8, 12, 16, 32, ... more expensive)
- Less noise, higher SNR of small elements
- Small elements sensitive to shallower depth
- Multiple elements provide anatomical coverage
- Higher SNR can be traded for:
 - Better resolution: larger matrix, thinner slices
 - Shorten scan time or increase number of slices by reducing number of averages
- Enables the ability to do parallel imaging

3T 8 channel CTL array							
Caustra Caustra Tangen Denne 7 Denne 7 Denne 1 Denne 1 Denne 7 Denne 1 Denne 1 Denne 1 Denne 10 Denne 11 Denne 1 Denne 1 Denne 10 Denne 11							
SERVICE MANUAL	Figure 4: Positioning the coil and phantoms						
USA Instruments, Inc. Document 2413107-3 Revision 1	Landmark						
GE Signa [®] EXCITE [™] 3.0T Premier III Phased Array CTL Spine Coil (3.0T HD CTL Array) GE Catalog Part Number: M1385AW	Figure 5: Landmark						

Measuring coil SNR

- Method 2:
 - SNR = 0.655 x mean Signal divided by the std deviation (of an ROI in air)

$$SNR = \sim 0.655 \ S / \sigma_{ain}$$

- 0.655 factor corrects for the background signal in magnitude images having Rician distribution, rather than Gaussian
- Noise ROI should be placed to avoid artifacts

32 channel Spine Array Automated Coil QC • Siemens AERA • Service mode not required. • Reports (pdf) available						
Magnetom Aera, Skyra Operator Manual – Coils, Siemens			Siemons Med Sorvice Software Gualty Assurance HOME Workflow Boalty Assurance Beartal Gasting Neurance	Microsoft Internet Explorer provid Qualit Bedy 18 feet Coil Check	ed by Siemons Modical Solutions I X Event Log Reports Heb y Assurance - Coll	
mandai	00110, 0		Coll Quality Assurance Body 18 feet Coll Check Robe 18 head Coll Check	E Body 18 head Coil Check	Done	
			Body 18 left Coll Check Body 18 right Coll Check	F Body 18 left Coll Check	Dene	
			Flex Large 4 Coll Check Flex Small 4 Coll Check	Body 18 right Coil Check	Dene	
			Head Neck 20 Coll Check Loop 11 cm Coll Check	Flex Large 4 Coll Check	TcDo	
			Loop 4 cm Coll Check Loop 7 cm Coll Check Solar 22 Coll Check	Flex Small 4 Coll Check	TeOn	
Summary			Duality Assurance Expert	Head Neck 20 Coll Check Loop 11 cm Coll Check	TeDo	
	Status			Loop 11 cm Coll Check	TcDo	
000 Spins 22 SD1 Tes				E Loop 7 cm Coll Check	TeDe	
098_Spine_32_SP1_Tra				F Spine 32 Coll Check	TeOp	
098_Spine_32_SP2_Tra	OK					
098_Spine_32_SP3_Tra	OK					
098_Spine_32_SP4_Tra	OK					
098 Spine 32 SP5 Tra	ОК					
098 Spine 32 SP6 Tra		S/N				
098 Spine 32 SP7 Tra		Parabola Fit				
098 Spine 32 SP8 Tra		Value Min				
Program Result	Success	42.5 29.0				
			Ready	Estimated Time: 0.35.00	Go Toggle Update	

Signal Intensity Corrections

Signal intensity correction algorithms designed to improve image uniformity when using phased array coils:

• SCIC, PURE (GE), CLEAR (Philips), Normalize, pre-scan Normalize (Siemens)

Advantages:

- Provides more uniform clinical images.
- Needed for multi-channel phased array head coils to pass ACR PIU test.

Turn off for coil QC:

- Can mask coil element failures.
- Changes signal and noise distribution in the image (SNR, PIU)

Phantoms and SNR

Phantoms:

- Fluid filled, various shapes and sizes.
- Water doped with paramagnetic substance to create T1 and T2 relaxation times similar to tissue, and NaCl₂ for similar conductivity.
 - NaCl + CuSO₄
 - NaCl + NiCl₂ (e.g. ACR phantom, less temperature dependent)
- 3T phantoms may be oil filled to reduce RF penetration and dielectric effects.

Factors that affect SNR, detection of bad coil elements

Scan parameters

• Pulse sequence, scan parameters (TR/TE, receive bandwidth, # averages, matrix, slice thickness, FOV, ...)

- Coil configuration
- Application of intensity corrections
- Use of parallel imaging don't use

Setup and analysis

- Phantom, fill solution
- Phantom position within the coil
- Size and position of ROIs

RF Coil Quality Control

Use consistent scan/measurement methods:

Identical phantom and positioning within coil

- Homogeneous phantom (sphere, cylinder, block, custom)
- Use the same phantom every time

Identical scan parameters:

- Pulse sequence, timing parameters (TR, TE), flip angle, slice thickness and position, matrix, FOV, receive bandwidth, etc
- Record transmit gain/attenuation, receiver gains

Identical measurement methods, ROI positions

- Signal, noise, SNR, signal uniformity, ghosting
- Evaluation of channel performance

Record procedure (photo of setup, ROI positions, scan parameters)

RF Coil Quality Control

Coil testing:

- Follow manufacturer procedure or develop your own.
- Manufacturer may be more likely to respond to coil QC failure when their QC procedure is followed.

Uniformity:

- Follow procedure in 2004 ACR MRI QC Manual or vendor's procedure if available
 - Volume coils: min, max signal intensity within large ROI
 - Surface coils: min, max signal intensity

RF Coil Quality Control

Artifact evaluation

- Evaluate images acquired using QC protocol
- Volume coils: measure ACR ghosting ratio
- To troubleshoot artifacts observed on patient images may acquire images of homogeneous QC phantom using clinical protocol.

Functional checks

- Verify that all coil configurations function
- Verify that the coil functions in all ports
- Record any error messages

RF Coil Quality Control

Coil testing:

- Important to test coils:
 - after installation of new scanner or new coils
 - at least annually
 - · whenever artifacts or coil problems occur

Clinical example

Signal loss – superior anterior element of 1.5T 8 channel body array

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Coil QC Report

Coil description

- Manufacturer, model, serial number
- Scanner used for testing
- QC Method
 - Pulse sequence, scan parameters (TR/TE, bandwidth, averages, FOV, slice thickness/spacing, matrix), applied filters, etc
 - Transmit and receiver gains
 - Phantom, position within coil (photo)
 - SNR measurement method used
 - Position of signal and noise ROIs (photo/screen cap)

Coil QC Report

Measurements:

- SNR, uniformity, ghosting
- Artifact evaluation
- Limits and source of limits (e.g. baseline, coil manual)
- Pass/fail results
- Date
- Physicist

RF coil report (ACR)							
 Volume coil: SNR Percent signal ghosting Percent uniformity Surface coil Maximum SNR 	W:cm² ta Collected: Mean Ma	IL - ITYPE - I	TR:	TE: BW:m miny1 Backgr Sigr Sigr mity1 BV miny1 BV miny1 BV miny1	round space	flip_anskHz; NSA ing Noise Standard Devlation Devlation Date: FOV:kHz; kHz; mSignal-tc se Ratio	iemm Ghost Signal

Challenges

- Phased array coils:
 - 8-, 12-, 16-, 32-, ….128-channel arrays
 - Ideally should test individual channels
 - Not all vendors provide automated test tools
 - Manual measurements are time consuming
 - Need tools for physicists in the field
- AAPM MR Subcommittee Task Group

Which is not appropriate for coil QC?

- 1. Spin echo pulse sequence
- 2. Image evaluation for artifacts
- 3. Application of signal intensity correction
- 4. Use of the same phantom and setup
- 5. Measurement of uniformity for volume coils

Answer: 3. Application of signal intensity correction

Reference: AAPM Report 100

Coil element failure in a multi-channel phased array coil

- 1. Will always be visible in the composite image
- 2. Will always be apparent by a failing PIU value
- 3. Will be demonstrated by excessive ghosting
- 4. Is best demonstrated by acquiring phantom images with individual elements
- 5. Is not an issue for clinical images

Answer: 4. Is best demonstrated by acquiring phantom images with individual elements

Reference: AAPM Report 100

Which statement is false? Coil QC phantoms

- 1. Should be homogenous or have a homogeneous section
- 2. Are interchangeable
- 3. Contain fill solution with conductivity and relaxation properties similar to tissue
- 4. Should conform to the coil shape
- 5. Provide uniform signal for SNR and uniformity determination

Answer: 2. Are interchangeable Reference: ACR Magnetic Resonance Imaging QC Manual, 2004.

References

- 1. ACR Magnetic Resonance Imaging (MRI) Quality Control Manual, 2004. (under revision)
- 2. Determination of Signal-to-Noise Radio (SNR) in Diagnostic Magnetic Resonance Imaging, NEMA Standards MS 1-2008. <u>www.nema.org</u>
- 3. Dietrich et al, Measurement of Signal-to-Noise Ratios in MR Images: Influence of multichannel coils, parallel imaging, and reconstruction filters, JMRI, 26(2), 2007.
- 4. Goerner & Clarke, Signal-to-noise ratio in parallel imaging MRI, Med Phys 38(9), 2011
- 5. Jackson EF, et al (2010). "Acceptance testing and quality assurance procedures for magnetic resonance imaging facilities: Report of MR Subcommittee Task Group 1", AAPM Report 100, 2010.
- 5. Reeder, Measurement of Signal-to-Noise Ratio and Parallel Imaging, in Parallel Imaging in Clinical MR Applications, 2007.