Imaging Educational Course: TU-E-134-01

<u>Developments in Imaging Receptors and</u> <u>Applications in Projection X-ray Imaging</u>:

J.Yorkston Carestream Health Rochester NY

 John Yorkston works for Carestream Health that manufactures and sells CR and DR systems for medical applications

Digital Acquisition: Introduction

- "CR" technology introduced in 1980's
 - Originally referred to "storage" phosphor based systems
 - Cassette based imaging with separate readout scanner
 - Similar workflow as screen-film cassettes
- "DR" technology introduced in mid 1990's
 - Originally referred to a-Si:H (and CCD) based systems
 - Integrated with x-ray system
 - Fully "electronic" readout with no moving parts
- Since then a number of novel hybrid systems:
 - -"Avalanche" of new terms and nomenclature that confuse and confound
 - Much of this originates in the "marketing" departments of companies

Educational Goals:

- Identify features that define the underlying technology
- Decipher confusing terminology present in marketplace
 Know what questions to ask
- Appreciate differences between competing approaches
 - All systems have their pros and cons...
 - Important to know which suits your application and budget
- Understand recent/future developments
 - New detector design and system configurations
 - New types of "future" detectors and their capabilities

Digital Image Formation:

Outline:

- Discuss x-ray absorption material selection
- Review secondary quantum detection options
- Review current status of projection x-ray technology – Highlight new developments in designs and their rationale
- Review future detector developments
 - New configurations (e.g. flexible substrates, "smart pixels")
 - New capabilities (e.g. photon counting and energy resolution)

X-Ray Absorption Materials:

- Advantageous properties for an x-ray absorber include:
 - Absorb as many x-rays as possible
 - Provide accurate measure of how many x-rays interacted
 - Maintain information on spatial location of point of interaction
 - Manufacturable over suitably large physical areas
- Two different types of materials used:
 - Phosphor materials that generate light
 - Photoconductor materials that generate electrical charge

X-Ray Phosphors:

- Two categories of x-ray phosphor materials
 - Prompt emission materials (e.g. $Gd_2O_2S(Tb)$ also known as GOS)
 - » Emit light "instantaneously" on absorption of x-ray
 - » Formed basis for "modern" screen-film systems
 - Photo-stimulated emission materials (e.g. BaFBr(I))
 - » Fraction of x-ray energy stored in long lived "latent" sites
 - » Require readout with stimulating radiation (typically laser)
 - » Also known as "storage" phosphors
 - » Formed basis for Computed Radiography (CR) systems
 - » Actually emit ~50% of energy as "prompt" light
 - » Require erasure step to remove remaining signal
- Traditionally created as particle-in-binder (PIB) layers
 - » Also known as phosphor-in-binder or POWDERED Phosphor

X-Ray Phosphors:

- PIB configured from small phosphor grains in plastic
 - Relatively "easy" to manufacture (after decades of development)
 - Very physically robust
- Issue with creating thick layers to increase absorption
 - Light scatters within material
 - As thickness increases so does light spreading
 - » Reduces resolution and increases noise (Lubberts effect)
 - Escape efficiency of light from screen varies through screen depth
 - » Also results in increased noise (Swank noise)

2000X

phosphor Air gaps binder

(upper phosphor layer)

~100-150 μm

X-Ray Phosphors:

- More recently "structured" phosphors have been used
 - Prompt emission type: CsI(Tl)
 - Stimulated emission type: CsBr(Eu)
 - Reduces effect of thickness on spatial resolution: allows thicker layers
 - Improves light escape efficiency so reduces Swank noise
 - Allows higher "packing fraction" than PIB so higher effective absorption

~200 μm Mammo. ~500-600 μm Gen. Rad.

X-Ray Photoconductors:

- Somewhat different issues than phosphors:
 - Require applied voltage to "energize" layer and allow charge collection
 - Internal field constrains lateral drift of released charges
 - Near perfect spatial resolution almost independent of thickness
 - High collection efficiency so low Swank noise
 - Most mature material is amorphous selenium (Z=34)
 - » Low Z value limits x-ray absorption at diagnostic energies (>60kVp)
 - » Difficult to manufacture thick layers (~1000 μm) over large area
 - » More suited to mammographic applications (<30kVp)
 - Other materials include c-Si, CdTe, CdZnTe, HgI, PbI, PbO, Xenon.

~200 μm Mammo. ~500-1000 μm Gen.Rad.

Primary Photon Absorption

Mammo. Photon Absorption vs. Thickness

RQA-9 Photon Absorption vs. Thickness

Clinical Image Comparisons: Lateral Chest (120kVp) 500µm CsI(Tl) 500µm a-Se

X-Ray Absorption Materials Summary:

- Can be divided into 3 main types:
 - Prompt emitting phospors ($Gd_2O_2S(Tb)$, CsI(Tl))
 - Stimulated emission phosphors (BaFBr(I), CsBr(Eu))
 - Photoconductors (a-Se)
- Phosphors can be sub-divided into:
 - Powdered or Particle-in-binder layers
 - Structured/Needle/Focused Phosphors
- All have sufficiently good properties to be "useful"
- Which is "best" depends on specifics of application

Secondary Quanta Detection:

• Issues are similar for phosphors and photoconductors

Need accurate measure of generated signal over <u>large areas</u>
Maintain image "quality" produced by x-ray absorption layer

- Possible approaches include
 - Point by point scanning
 - Line scanning
 - Full area readout

Point by Point Scanning:

- Storage Phosphors/CR lend themselves to this approach
 - Image information "stored" in phosphor till scanned
 - Allow time to scan whole area with small laser spot
 - Spot ~100 μ m in size, 10mW power,
 - Dwell time \sim few μ secs/pixel
 - ~30 or so seconds for full readout

SCREEN

COLLECTOR

Point by Point Scanning:

- Optics and mechanical motion require "large" system
- Issue with collection efficiency of stimulated light
 - Secondary quantum sink at collection stage
- One solution: read out signal from both sides of phosphor

analog

Point by Point Scanning:

- NovaRay's ScanCathTM inverse geometry system (SBDX)
- Uses large area source and small area detector
 - Pixellated CdZnTe photon counting detector
 - Transmission anode target with collimator
 - Excellent scatter rejection
 - Targetted to cardiac imaging at 30 fps.
 - Automatically collects tomosynthesis data

- To improve scan speed read out a line at a time.
- With storage phosphor can readout lines after area exposure
 - Incorporate line laser and solid state collector in compact single unit
 - Significantly reduces space requirements for beam path optics
 - Still requires mechanical motion
 - Also possible with photoconductor (e.g Thoravision)

Philips Thoravision a-Se Chest System

- With prompt emitting phosphors need to collimate x-rays
- Numerous versions of line/slot scanned systems
- Most use some form of linear CCD as detector
 - c-Si photon counting mammo system recently approved by FDA
 - Gas wire chamber based systems have also been reported
- Good coupling between phosphor and CCD, good DQE
- Excellent scatter rejection
- Still require mechanical motion and collimation alignment
- Scan times of multiple seconds
- Commercial examples that used CsI(Tl) coupled & linear CCD's include:
 - Thorascan (Oldelft) chest system
 - Senoscan (Fischer) mammo system

•Lodox Statscan •Full body scan 13 secs •Linear CCD with CsI(Tl)

•Biospace EOS

Full body scan 20 secsPerpendicular wire/gas chambers

- Crystalline Si low x-ray absorption efficiency (Z=12)
 - Si chip fabrication uses thin layer of processed materials (~100's $\mu\text{m})$
 - Not thick enough for direct x-ray absorption
 - Increase effective thickness by rotating thin layer of c-Si
 - Used in commercial scanning "photon counting" mammo system
 - Takes multiple seconds for scan

Philips MicroDose

Full Area "Electronic" Readout:

• Earliest approaches used CCD detectors

Area Readout: Single CCD Configuration

Area Readout: Multiple CCD Configuration

- SwissRay and Apelem
 - reduces de-mag.

(Source: SwissRay Corp.)

Area Readout: Multiple CCD/CMOS Config.

- CaresBuilt and Naomi
 - Tiling of image an issue

Area Readout: a-Si:H Flat Panel Readout

- Fabricated using large area a-Si:H deposition facilities
 - + 14x17" or larger readily available with pixels down to <100 μm
 - Can use prompt emitting phosphor or photoconductor
 - Directly coupled to x-ray absorption layer (high transfer effic.)
 - "Electronic" readout can operated in static or fluoroscopic modes

Sharp Gen. 10 Glass Substrate 9x10'

Area Readout: a-Si:H Flat Panel Readout

Area Readout: a-Si:H Flat Panel Readout

- Advantages of a-Si:H readout arrays
 - Large area fabrication (>40cm dimensions) allowing non-tiled detector
 - "Mature" fabrication infrastructure (based on display industry)
 - Many peripheral components now available "off-the-shelf"
 - Excellent image quality due to high 2nd quanta collection efficiency
 - True "electronic" readout (no mechanical moving parts)
 - Advanced application capable (i.e. supports "real-time" readout speeds)
 - Very tolerant of radiation damage (due to amorphous structure)
- Challenges for a-Si:H readout arrays
 - Relatively high "additive" electroinc noise
 - Compromises low exposure perfomance
 - Fabricated on "fragile" glass substrates (0.5mm thick or less)
 - Inherent materials properties affect "image quality"
 - Low carrier mobility limits "smart" pixel capabilities
 - Large feature sizes may limit "fill factor" of small pixels

Recent Developments: a-Si:H Portable Systems

- •Recently, portable 14x17" & 17x17" detectors introduced
 - Initially rather heavy/bulky/thick with tether
 - More recently wireless, battery powered with cassette form factor
 - Smaller sized detectors (10x12") now being introduced

Recent Developments: Beam Triggered Readout

- Synchronization between detector & x-ray delivery essential
 - Unlike screen/film and CR which are always "active"
- Traditional flat panel detectors integrated with generator
- New approaches have no hardwired "electrical" interface
 - Makes retrofitting of older systems easier

Recent Developments: Back Screen Config.

- Concept previously used in film/screen mammography
- Most advantageous when:
 - Energy deposition weighted towards entry side of screen (e.g. mammo)
 - Have low x-ray absorption substrate
 - \cdot Can reduce Swank noise and Lubberts Effect hence improving IQ

Recent Developments: Smart Pixels

- Numerous research groups reported on pixel level circuitry
 - Main goal to amplify signal level to reduce effect of addt. noise
 - Issue with size of a-Si:H TFT's which can reduce fill factor
- First large area demonstration of multiple TFT a-Si:H pixels
 - 17x17" CsI detector, 150um pixels
 - 1x1 or 2x2 binning at pixel level
 - Improves noise performance
 - Adds signals <u>before</u> digitization

From: Ito et.al. SPIE Phys. Med. Imaging 8668 (2013) 866807-1

Recent Developments: New Materials

- New substrate materials
 - Flexible substrates e.g. plastic, metal & glass (~0.1mm thick !)
 - These would allow conformable, large area, very robust detectors
 - •Available 30cmx300m for roll-to-roll proc.
- New fabrication materials
 - Low temperature poly-Si
 - Has improved carrier mobilities
 - IGZO
 - Compatible with large area deposition
 - Has better carrier mobility hence smaller feature sizes
 - Allows more complex circuitry at pixel level
- New X-ray converters for lower dose applications
 - Mostly photoconductors that generate more signal per x-ray (e.g. PbI, HgI, CdTe, CdZTe, PbO)
 - Still mainly academic and commercial research activities

Corning Willow GlassTM

Recent Developments: Flexible Substrates

- Worlds first com. available curved screen TV from LG (~\$10,000 !)
 - Uses a flexible substrate and IGZO instead of a-Si:H
 - 4.3mm thick !!

Area Readout: CMOS Technology

- Fabricated with "standard" silicon IC chip technology
 - •Typically use standard 8" Si wafer fab. capability
 - Limits physical dimensions of sensor
 - •Small feature size (<10nm) allows complex pixels
 - e.g. Pixel level amplification, and dose sensing
 - Larger sensor tiles can reduce yield and increase cost

12 inch

Area Readout: CMOS Technology

- Recent development is "large" 3 side buttable CMOS tiles
 - Very low "additive" readout noise (100's el. c.f. 1000's for a-Si:H)
 - High speed readout (~30+ f.p.s)
 - Integrated electronics (e.g. ADC's and pixel level circuitry)
 - <u>Directly</u> coupled to x-ray absorption layer (high transfer effic.)
 - High fill factor even with small pixels (<75um)

Area Readout: CMOS Technology

- CMOS allows energy integrating or photon counting
 - Energy integrating typically utilizes CsI or GOS bonded to chip
 - Photon counting typically uses photoconductor (CdTe or CdZnTe)
 - Use of CdTe and CdZnTe currently limits size of sensor to < ~2-5 cm
 - Energy selective imaging is possible
 - Photons can be weighted according to image information "content"

•Energy resolved photon counting allows multi-spectral imaging

Summary:

- Knowing the basic components allows for informed choices.
- Storage phosphor systems: Faster, smaller and cheaper
 - Slow readout speeds prevent "real time" use
- a-Si:H Flat Panels: Form factor and functionality (and price!)
 - New materials continue to be investigated
 - Watch for developments in display manufacturing (e.g use of IGZO)
- CMOS: Increasing commercial visibility and viability
 - Confined to smaller area applications at present (tiled arrays)
 - Dental intra-oral, mammography, small field fluoro, CBCT
 - Excellent image quality and energy selective imaging capabilities

Performance Summary:

	Point/Line Scanning Stimulated Emission Phosphor		Full Area Readout					
			Prompt Emission Phosphor				Photoconductor	
	BaFBr(I)	CsBr(Eu)	a-Si:H +GOS	a-Si:H +CsI(Tl)	CCD/CMOS lens/fib.opt.	Tiled CMOS	200µm a-Se (mammo)	500µm a-Se (gen.rad.)
Speed of Readout	 (+ if integ.)	- (+ if integ.)	+ +	+ +	+ + +	+ + +	+ +	+ +
Image Quality	+	+ +	+ +	+ + +	+	+ + +	+ + +	+ +
Robustness	+ ++	-	+ + +	-	+ + +	+ +	-	
Size		-	+	+		+	+	+
Cost	+ + +	+	-	-	+ + +	-	-	-
Adv. Apps. (tomo& DE)	-	-	+	+ +	+	+ + +	+ +	+