The Management and Reporting of Imaging Procedure Dose 1: Interventional Radiology/Cardiology WE-A-144-01

II. Measurements and Dose Calculations

Beth Schueler, PhD, Mayo Clinic Rochester, MN Why Measure Dose in Fluoroscopically-guided Interventional (FGI) Procedures?

- Estimation of radiation risk after a procedure
 Cancer and skin injury
- Evaluate radiation risk during a procedure
- Ensure appropriate follow-up for possible skin injury
- Practice quality improvement efforts
- Compliance with state regulations

Cancer Risk

- May be needed for IRB evaluation of research
- Particularly important for pediatric patients
- Estimate from individual organ doses
- Generally, multiple organs would need to be included
- Estimate from effective dose, E
- E can be estimated from Kerma Area Product $(\mathsf{P}_{\mathsf{KA}})$
 - P_{KA} represents total energy incident on patient

8-7-2013

- Displayed on most systems during the procedure
- Included in study data stored after procedure completed

Effective Dose Estimation

Exam	DCCE (mSv/Gy-cm ²)	Typical E (mSv)
Hepatic chemoembolization	0.26	70
Renal/Visceral PTA with stent	0.26	60
Vertebroplasty	0.20	15
Pulmonary angiography with filter	0.12	15
Carotid stent	0.09	14
	Reference:	NCRP Report 160

Fluoroscopic Skin Injury

- Estimate risk from peak skin dose
- Location and size of the exposed region
 - Follow-up skin evaluation
 - Planning subsequent procedures

Skin Dose Measurement Methods

- Direct
 - Placement of a detector directly on the patient's skin for a localized dose measurement
- Indirect
 - Calculation of skin dose from fluoroscopy equipment acquisition parameters

Direct Point Dosimeters

 Single or arranged in an array to cover exposed skin area

> Nanodot (Landauer)

Reference: Suzuki et al, Radiology 2005;239:541

Direct Point Dosimeters

• Merits:

- Accurate dose value and localization
- · Measurements obtained over a large area
- Not visible in x-ray image
- Drawbacks:
 - No real-time feedback
 - Labor-intensive readout process not practical for routine dose monitoring

Skin Dose Measurement Methods

- Direct
 - Placement of a detector directly on the patient's skin for a localized dose measurement
- Indirect
 - Calculation of skin dose from fluoroscopy equipment acquisition parameters

Reference Point Air Kerma, K_{a.r}

 Display at operator's position required for fluoroscopes manufactured after June 2006*

Indirect Skin Dose Estimation

• Merits:

- Real-time
- feedback
- Relatively easy to access
- Some systems provide a dose report
- b a ir

· ·	ima
ose report may	But
e able to be	84
rchived as an	
ADCH	

Exam. Date and time: August 12, 1900 9:25 PM Examination umulative fluoropopy time: 1:15:33 hh:mm:s Cum. DAP (fluoroscopy) Cum. DAP (exposure) 1002 m@yam* 902 m@yam* Total DAP. Cumulative Air Kerma: műy 150.02 nber of acquired runs: nber of acquired images: nber of acquired exposure

Patient's name: Test, Patient

Indirect Skin Dose Estimation

• Drawbacks:

- Corrections are needed for accurate skin dose estimation from $K_{a,r}$ value
- K_{a,r} value is cumulative over all skin entrance ports
 - Peak skin dose value, location and area not readily available without further computation

Skin Dose Estimation Steps *

- 1. K_{a,r} calibration
- 2. Entrance skin port location(s)
- 3. Source-skin distance correction
- 4. Table and pad attenuation correction
- 5. Backscatter factor
- 6. f-factor

1. $K_{a,r}$ Calibration

- K_{a,r} ± 35% accuracy per FDA *
 - AAPM Task Group 190 Accuracy and Calibration of Integrated Radiation Output Indicators will produce a report with verification procedure to an external dosimeter

* FDA (2009), 21 CFR Part 1020.32

1. K_{a,r} Calibration

- Correction factor should be determined
- Service adjustment of K_{a,r} readout value is possible for some systems

* See Jones and Pasciak, JACMP 2011;12:231 for a detailed review

- · Summary of collected field data for 12 systems monitored annually for 10 years, multiple vendors and models
 - · Correction factor is fairly stable over time
 - · Correction factors vary widely from system to system

2. Entrance Skin Location

- Determine if there were multiple, distinct entrance skin ports
 - Biplane systems
 - Widely separated C-arm angles
 - Multiple treatment regions
- Review stored images

2. Entrance Skin Location

Data per DA series may also be available in a dose report or DICOM header elements

	VARIABLE IVC 125.3ms ****** large 0.0Cu 42cm 556.8µGym	s <u>2F/s 16-Mar-12 18:1</u> 7:49 22.5mGy OLAO 1CRA 2F
	VARIABLE IVC 1 125.0ms ****** large 0.0Cu 32cm 279.luGym	s 2F/s 16-Mar-12 18:18:14 24.3mGy 0LAO 1CRA 2F
17 DSA A 102kV 305mA	VARIABLE IVC 9 199.6ms ****** large 0.0Cu 32cm 2336.9uGym	s 27/6 16-Mar-12 18:32:22 : 194mGy 22LAO 2CRA 14F
	VARIABLE IVC 7 199.6ms ****** large 0.0Cu 32cm 2419.9µGym	s 2F/s 16-Mar-12 18:33:21 * 193mGy 22LAO 2CRA 14F
Accumulated Phys:	exposure data Exposures: 18 Fluoro: 63.2min	16-Mar-12 19:26:50 Total: 90737.4µGym ² 10042mGy

2. Entrance Skin Location

- Verify close entrance ports with a phantom and film or fiducial markers
- If field overlap is possible, a single skin port location is recommended

3. Distance Correction

- Inverse square correct K_{a,r} to actual source-skin distance (SSD)
- SSD will vary depending on table height used clinically
 SSD = Table height – source-
- floor distance pad height • Table height depends on
- physician preference
- DICOM header for DA
 Tag (0018, 1111)
 - Tag (0018, 1111)

4. Table/Pad Attenuation Correction Phick foam pads are especially attenuating Typical correction factor is 0.75 to 0.85 Measurement method: Broad-beam geometry (scatter from table/pad included) Same kVp, beam filtration, field size as used clinically

5. Backscatter Factor 6. Catter from exposed tissue contributes to skin dose **9.** Pipela backscatter factor is 1.3 to 1.5 **10.** Backscatter factor depends on: **10.** Pipela backscatter factor s P_k/K_a,

Fluoroscopy Contribution

- Above correction factors are easier to assess for DA
 - More difficult for fluoroscopy since generally not recorded
 - Do not assume fluoroscopy contribution is minimal
- Interview staff to estimate parameters
 Alternatively, assume same as DA
- Estimate x-ray beam quality from measurements with a phantom simulating patient thickness

Example Skin Dose Calculation

- Source-skin distance = 68 cm
- 32 cm FOV (20x20 cm field size) used for most of the procedure
- DA:
- 80-85 kVp, no Cu filtration 3.5 mm Al HVL
 Fluoro:
- 70-80 kVp, 0.2 mm Cu filtration 5.5 mm Al HVL
- Measured table+pad attenuation for these beam conditions

8-7-2013 WE-A-144-1 36

6

Exam	DA	Fluoro
K _{a,r} (mGy)	3057	2120
- Distance correction (60/68) ²	0.78	0.78
- Table + pad attenuation	0.77	0.81
- Backscatter factor	1.43	1.52
- f-factor	1.058	1.062
Combined correction factors	0.91	1.02

Indirect Skin Dose Estimation

• Drawbacks:

- Corrections are needed for accurate skin dose
 estimation from K_{a,r} value
- K_{a,r} value is cumulative over all skin entrance ports
 Numerous assumptions required
- However, complete exposure data is available to produce a skin dose map

DICOM Radiation Dose Structured Report

- Dose report includes acquisition parameters for each "irradiation event" in an exam*
 - Irradiation event: DA image, DA series or fluoroscopy foot-switch
 - Data for each event includes: K_{a,n} P_{KA}, C-arm angles, filter, kVp, mAs, source-patient, sourcedetector distances, table position

*DICOM Sup 94 Dose SR 2005

Automated Skin Dose Calculation

- Patient is represented by a computational model
 - Position and location on the table specified manually
- For each irradiation event, K_{a,r} values corrected and mapped to the model surface
- Summed events produce a skin dose map and peak skin dose value and location

Automated Skin Dose Calculation

- Both methods are transferable
 - Use independent workstation and standard DICOM output
- Drawbacks:
 - Streaming of the DICOM Dose Report would be needed for real-time feedback to physician
 - Dose Report availability is currently limited

Conclusions

- Measurement of dose during fluoroscopic procedures is an important tool for assessment of individual patient radiation risk
- Use of reference point air kerma most practical method
- Skin dose mapping applications are under development