# Tracking Doses in the Pediatric Population

Frederic H. Fahey DSc

Boston Children's Hospital Harvard Medical School

frederic.fahey@childrens.harvard.edu





## Disclosures

- Sadly, none that pay me any money! 🛞
- SNMMI Dose Estimation Task Force
- Image Gently
- Image Wisely
- MITA Dose Reduction Task Force Advisory Board

## Estimated Annual Per Capita Adult Effective Dose in US



Medical 0.5 mSv Total 3.1 mSv Medical 3.0 mSv Total 5.5 mSv

from NCRP 160

## Nuclear Medicine Procedures in the US



**NCRP 160** 

R. Fazel et al., Exposure to Low-Dose Ionizing Radiation from Medical Imaging Procedures. NEJM 2009; 361:841-843

- Studied insurance records of over 900,000 patients (18-65 YO) over 3 years
- 69% had at least 1 radiologic exam
- Annual effective dose
  - Mean 2.4  $\pm$  6.0 mSv
  - Median 0.1 mSv (inter-quartile range 0.1-1.7 mSv)
  - 78.6% < 3 mSv; 19.4% 3-20 mSv
  - 1.9% 30-50 mSv; 0.2% >50 mSv

A. Dorfman et al., Use of Medical Imaging Procedures with Ionizing Radiation in Children. Arch Pediatr Adolesc Med. 2011;165:458-464.

- Insurance records of 355,000 children (under 18 YO) over 3 years
- Number and type of exams, not dose
- 42.5% of children had a radiologic procedure
- Ave of 7 radiologic exams by 18 YO
- 84.7% radiography, 11.9% CT, 2.5% fluoro, 0.9% NM
- 4 NM studies per yr per 1000 children (bone, thyroid)

From the Life Span Study (LSS) of the Radiation Effects Research Foundation atom bomb survivors we have learned about the time course of cancer appearance after a single acute dose of radiation – in the next decade we will learn more from those exposed in early childhood.



# Cancer Mortality (Solid Tumors) from Lifespan Study (1950-2003)

|                    | TABLE 9<br>Observed and Excess Deaths from Solid Cancer and Noncancer Diseases |              |                  |                                     |                           |                  |                                     |                              |
|--------------------|--------------------------------------------------------------------------------|--------------|------------------|-------------------------------------|---------------------------|------------------|-------------------------------------|------------------------------|
|                    |                                                                                |              |                  | Solid cancer                        |                           | 1                | Noncancer disease                   | es <sup>c</sup>              |
| Colon dose<br>(Gy) | Number of subjects                                                             | Person-years | Number of deaths | Number of excess cases <sup>a</sup> | Attributable fraction (%) | Number of deaths | Number of excess cases <sup>b</sup> | Attributable<br>fraction (%) |
| < 0.005            | 38,509                                                                         | 1,465,240    | 4,621            | 2                                   | 0                         | 15,906           | 1                                   | 0                            |
| 0.005-             | 29.961                                                                         | 1.143.900    | 3.653            | 49                                  | 1.3                       | 12,304           | 36                                  | 0.3                          |
| 0.1-               | 5,974                                                                          | 226,914      | 789              | 46                                  | 5.8                       | 2,504            | 36                                  | 1.4                          |
| 0.2-               | 6,356                                                                          | 239,273      | 870              | 109                                 | 12.5                      | 2,736            | 82                                  | 3.0                          |
| 0.5-               | 3,424                                                                          | 129,333      | 519              | 128                                 | 24.7                      | 1,357            | 86                                  | 6.3                          |
| 1-                 | 1,763                                                                          | 66,602       | 353              | 123                                 | 34.8                      | 657              | 76                                  | 11.6                         |
| 2+                 | 624                                                                            | 22,947       | 124              | 70                                  | 56.5                      | 221              | 36                                  | 16.3                         |
| Total              | 86,611                                                                         | 3,294,210    | 10,929           | 527                                 | 4.8                       | 35,685           | 353                                 | 1.0                          |

<sup>*a*</sup> Based on the ERR model was defined as the linear model with effect modification:  $\lambda_0(c,s,b,a)[1 + \beta_1 d \cdot \exp(\tau e + \upsilon \ln(a)) \cdot (1 + \sigma s)]$ . <sup>b</sup> Non-neoplastic blood diseases were excluded from noncancer diseases.

### Ozasa et al., Rad Research 2012;177:229-243.

Most national and international bodies (ICRP,NCRP) have based their low dose (<100 mSv) risk estimates on linear extrapolation of the higher dose data. This report states that there is a significant trend in this range, consistent with that observed for the full dose range.



Ozasa et al., Rad Research 2012;177:229-243.

### This, in turn, has led to the battle of the national academies:

## **From BEIR VII – National Academies of the USA**

...current scientific evidence is consistent with the hypothesis that there is a linear, no-threshold doseresponse relationship between exposure to ionizing radiation and the development of cancer in humans

### **From Académie des Science – Institut de France**

While LNT may be useful for the administrative organization of radioprotection, its use for assessing carcinogenic risks, induced by low doses, such as those delivered by diagnostic radiology or the nuclear industry, is not based on valid scientific data.

## Lifetime Attributable Risk 10 mGy in 100,000 exposed persons (BEIR VII Phase 2, 2006)

|               | All Solid | l Tumors | Leukemia |        |  |
|---------------|-----------|----------|----------|--------|--|
|               | Male      | Female   | Male     | Female |  |
| Excess Cases  | 80        | 130      | 10       | 7      |  |
| Excess Deaths | 41 61     |          | 7        | 5      |  |

Note: About 45% will contract cancer and 22% will die.

Lifetime Attributable Risk 10 mGy in 1,000,000 exposed persons (Based on BEIR VII Phase 2, 2006)



## **MIRD** Equation



Medical Internal Radiation Dosimetry Committee of the SNMMI

# MIRD Equation MIRD Pamphlet 21. J Nucl Med 2009;50:477 $D(r_T) = \sum_{s} \tilde{A}(r_s) S(r_T \leftarrow r_s)$

- $D(r_T)$  is radiation dose to the target organ
- $\tilde{A}(r_s)$  is time integrated activity for the source organ
- "S" value is a radionuclide specific quantity which is the mean dose to the target organ per integrated activity in the source organ
- $\sum_{s}$  indicates that this is summed over all source organs

# Time Integrated Activity (Ã)

- Units of activity-time (e.g. Bq-hr) & is total # of decays
- Depends on
  - Administered activity (A<sub>o</sub> in Bq)
  - Fraction of activity that goes to source organ (F)
  - How long the activity stays there (T<sub>eff</sub>)

$$\tilde{A}(r_{S}) = A_{o} F T_{eff}$$

F depend on the particular radionuclide administered, and the specific uptake of the patient.

# **S** Factor

## $S(r_T \leftarrow r_S) = \sum_i \Delta_i \phi_i / M_T$

- $\Delta_i$  is mean energy per nuclear transformation for the i<sup>th</sup> radiation emitted by the radiopharmaceutical
- $M_T$  is the mass of the target organ
- $\phi_i$  is the fraction of energy emitted by the source organ that is absorbed by the target organ of the i<sup>th</sup> radiation which depends on the radiation and the size and anatomy of the patient.  $\phi_i/M_T$  is the specific absorbed fraction (SAF).
- $\sum_{i}$  Indicates that this is summed over all radiations
- Determined by physical parameters such as radionuclide's decay scheme and orientation, size and spacing of patient's organs



## **Evolution of Computational Phantoms**

- Simple to complex
- Homogeneous to heterogeneous
- Rigid to deformable
- Stationary to moving
- "Reference Man" to "reference library" or "person-specific" (?)



## **Traditional vs Realistic Phantom**



- Use of non-uniform rational B-splines or "NURBS"
- Easier to compute and more scalable than voxel based approaches

Marine et al. J Nucl Med 2010;51:806-811

## Uncertainties

Uncertainties in Internal Dose Calculations for Radiopharmaceuticals

Michael G. Stabin

The combined uncertainties in most radiopharmaceutical dose estimates will be typically at least a factor of 2 and may be considerably greater.

> J Nucl Med. 2008;49:853-860 Most of uncertainty in physiologic factors.

## **MIRD** Equation





## **MIRD** Equation





- S Factor
  - Patient size
  - Relative size and location of organs



# **Pediatric Dosimetry Phantoms**





M. Cristy and K. Eckerman 1987 ORNL report

Lee *et al*. Med Phys 2007; 34:1858-1873

# Anatomical Models for Radiation Dosimetry



- Xu G, Eckerman KF, eds. Handbook of Anatomical Models for Radiation Dosimetry. CRC Press, 2009.
- Whalen S, Lee C, Williams J, Bolch WE. Phys Med Biol. 2008;53:453.
- Nosske D, Blanchardon E, Bolch WE, et al. Radiat Prot Dosimetry. 2011;144:314.
- Stabin M et al. RADAR reference phantom series. J Nucl Med 2012;53:1807.

- S Factor
  - Patient size
  - Relative size and location of organs

- S Factor
  - Patient size
  - Relative size and location of organs
- Integrated Activity
  - Relative uptake of radionuclide in organs
  - Clearance rate

- S Factor
  - Patient size
  - Relative size and location of organs
- Integrated Activity
  - Relative uptake of radionuclide in organs
  - Clearance rate

## Children are NOT small adults!

## **Effective Dose**

Effective Dose is equivalent to the absorbed dose given to the whole body of the patient that would result in the same biological effect as the actual clinical dose given to a fraction of the patient's whole body. It is calculated by taking a weighted sum of the absorbed doses delivered to individual organs where each organ is weighted by its radiation sensitivity.

## $ED = \Sigma H_T \times W_T$

Where  $H_T$  is dose to organ, T, and  $W_T$  is the radiosensitivity weight assigned to that organ.

## **Effective Dose**

#### TABLE I: Tissue-Weighting Factors for International Commission on Radiological Protection (ICRP) Publications 26, 60, and 103

|                 | Publication |         |          |  |
|-----------------|-------------|---------|----------|--|
| Tissue or Organ | ICRP 26     | ICRP 60 | ICRP 103 |  |
| Gonads          | 0.25        | 0.20    | 0.08     |  |
| Red bone marrow | 0.12        | 0.12    | 0.12     |  |
| Lung            | 0.12        | 0.12    | 0.12     |  |
| Colon           |             | 0.12    | 0.12     |  |
| Stomach         |             | 0.12    | 0.12     |  |
| Breast          | 0.15        | 0.05    | 0.12     |  |
| Bladder         |             | 0.05    | 0.04     |  |
| Liver           |             | 0.05    | 0.04     |  |
| Esophagus       |             | 0.05    | 0.04     |  |
| Thyroid         | 0.03        | 0.05    | 0.04     |  |
| Skin            |             | 0.01    | 0.01     |  |
| Bone surface    | 0.03        | 0.01    | 0.01     |  |
| Brain           |             |         | 0.01     |  |
| Salivary glands |             |         | 0.01     |  |
| Remainder       | 0.30        | 0.05    | 0.12     |  |
| Total           | 1.00        | 1.00    | 1.00     |  |

### From Christner et al. AJR 2010;194:881-889

## **Effective Dose**

Note: Effective dose is based on a population-based estimate of radiation risk and dose NOT apply to a specific patient. In particular, the risk estimates do NOT apply to children.

## Lifetime Excess Attributable Risk of Mortality per 100,000 for 10 mSv Whole Body Exposure

|           |        | Newborn | <b>10 Years</b> | 40 Years |
|-----------|--------|---------|-----------------|----------|
| Breast    | Female | 27.4    | 16.7            | 3.5      |
| Lung      | Female | 64.3    | 44.2            | 21.2     |
|           | Male   | 31.8    | 21.9            | 10.7     |
| Colon     | Female | 10.2    | 7.3             | 3.7      |
|           | Male   | 16.3    | 11.7            | 6.0      |
| All Solid | Female | 172     | 105             | 45.5     |
|           | Male   | 103     | 64.1            | 31.0     |
| Leukemia  | Female | 5.3     | 5.3             | 5.2      |
|           | Male   | 7.1     | 7.1             | 6.7      |

### Based on BEIR VII Ph 2

# Factors Affecting Dose in NM and SPECT

- Administered activity
  - Total counts and imaging time
- Choice of camera
  - Detector thickness and material
  - Number of detectors
- Choice of collimator
  - Hi Sens, Gen Purpose, Hi Res, Pinhole
- Image processing and reconstruction

# Patient Effective Dose (mSv)

| Summary           | 1 Year | 5 Year | 10 Year | 15 Year | Adult |
|-------------------|--------|--------|---------|---------|-------|
| Mass (kg)         | 9.7    | 19.8   | 33.2    | 56.8    | 70    |
| Tc-MDP (20 mCi*)  | 2.8    | 2.9    | 3.9     | 4.2     | 4.2   |
| Tc-ECD (20 mCi*)  | 4.1    | 4.6    | 5.3     | 5.9     | 5.7   |
| Tc-MAG3 (10 mCi*) | 1.2    | 1.3    | 2.2     | 2.8     | 2.7   |

\*max admin activ

**ICRP 80 and 106** 

## Factors Affecting Dose in PET

- Administered activity

   Total counts and imaging time
- Choice of scanner
  - Crystal material and thickness
  - 2D vs 3D
  - Axial field of view
- Image processing

# Patient Dose from FDG (mSv)

| Summary   | 1 Year | 5 Year | 10 Year | 15 Year | Adult |
|-----------|--------|--------|---------|---------|-------|
| Mass (kg) | 9.7    | 19.8   | 33.2    | 56.8    | 70    |
|           |        |        |         |         |       |
| Act (mCi) | 1.46   | 2.97   | 4.98    | 8.52    | 10.5  |
| Bladder*  | 25.6   | 35.9   | 44.4    | 48.8    | 50.5  |
| Eff Dose* | 5.2    | 5.9    | 6.6     | 7.3     | 7.4   |

**ICRP** 106

# Pediatric NM/PET Dose Tracking

- Administered activity
- Patient size (height, weight)
- Route of administration
- Physiologic parameters (age, disease)
- Image data

These data may not be available from DICOM header without double entry.



Adjustment factor from the adult dose





For more information about pediatric radiation safety, visit www.imagegently.org.

Gelfand MJ, Parisi MT, Treves ST *Pediatric radiopharmaceutical administered doses:* 2010 North American consensus guidelines. J Nucl Med. 2011;52:318-22.

In 2013, Image Gently and EANM worked successfully to harmonize the pediatric guidelines of both organizations. EANM has recently approved their harmonized guidelines.

Thirteen international NM organizations involved in NM Global Initiative considering Pediatric NM administered activities.

## Pediatric NM in Clinical Practice

- In 2007, surveyed 13 dedicated pediatric hospitals in North America.\* Follow-up survey in 2013
- Survey in 2013 of 200 general hospitals with over 300 beds in the US. Email survey survey to NM chief technologist or supervisor

\*Treves ST, Davis RT, Fahey FH. J Nucl Med, 2008;49:1024-1027.

## Pediatric NM in Clinical Practice (Dedicated Pediatric Hospitals)

- <u>2007</u>: For dose/kg and Maximum Dose the range factor varied, on average, by a factor of 3, and by as much as a factor of 10. Minimum Dose ranged , on average, by a factor of 10 and as much as a factor of 20
- <u>2013</u>: Dose parameters reduced or same in all cases. Range reduced in dose/kg and min dose but raised in max dose due to dose reduction (some stayed the same/ some lowered). All familiar with Image Gently and North American Guidelines. 10/13 modified their administered activities based on North American Guidelines

# Pediatric NM in Clinical Practice (General Hospitals)

- 121/294 hospitals responded. 80% perform pediatric NM studies. Essentially all scaled administered activity in smaller patients (90% by weight).
- Of 5 procedures considered, the median of the surveyed group was consistent with the North American Guidelines in all cases of dose/kg and Min Dose.
- 83% familiar with Image Gently, 58% familiar with North American Guidelines, 55% modified their administered activities based on North American Guidelines

## Factors Affecting Radiation Dose in Multi-Detector CT

- Tube current or time ( $\alpha$  mAs)
- Reduce tube voltage ( $\alpha kVp^2$ )
- Beam collimation
- Pitch (table speed) (α 1/pitch)
- Patient size
- Region of patient imaged

Median Effective Dose Values Review of Published Results

Head CT1.9 mSv (0.3-8.2)Chest CT7.5 mSv (0.3-26.0)Abdomen CT7.9 mSv (1.4-31.2)Pelvis CT7.6 mSv (2.5-36.5)Abd & pelvis CT9.3 mSv (3.7-31.5)

Pantos et al., Brit J Radiol 2011;84:293-303

## **CIRS** Tissue Equivalent Phantoms



- Dosimetric CT phantoms
- •Simulated spine
- •Five 1.3 cm holes
- •Five different sizes

| Phantom        | AP x Lat<br>(cm) | Circum<br>(cm) |
|----------------|------------------|----------------|
| Newborn        | 9 x 10.5         | 32             |
| 1 Year Old     | 11.5 x 14        | 42             |
| 5 Year Old     | 14 x 18          | 53             |
| 10 Year<br>Old | 16 x 20.5        | 61             |
| Med Adult      | 25 x 32.5        | 96             |

Fahey et al. *Radiology* 2007;243:96-104

Dosimetry of PET-CT and SPECT-CT

# PET/CT GE Discovery LS

# SPECT/CT Philips Precedent





# Dose from CT of PET-CT GE Discovery LS (4-slice)





Organ and effective doses in pediatric patients undergoing helical multislice computed tomography examination

## Lee et al. Med Phys 2007;34:1858-1873



Estimated organ and effective doses from helical CT for 5 phantoms and the MCNPX Monte Carlo photon transport code

## CAP CT exam, 120 kVp, 100 mAs 12 mm beam thickness, 1:1 Pitch (Dose in mGy)

| Organ       | 9 MO (M) | 4 YO (F) | 11 YO (M) | 14 YO (M) |
|-------------|----------|----------|-----------|-----------|
| Bone marrow | 6.02     | 6.64     | 7.33      | 7.62      |
| Lungs       | 15.95    | 14.75    | 12.74     | 13.04     |
| Stomach     | 15.62    | 14.13    | 12.71     | 10.73     |
| Muscle      | 8.20     | 7.68     | 5.93      | 5.40      |
| Breast      |          | 10.67    |           |           |
| Gonads      | 12.66    | 14.39    | 8.15      | 7.83      |

Lee et al. Med Phys 2007;34:1858-1873

#### ImPACT CT Patient Dosimetry Calculator Version 1.0 28/08/2009

| Scanner Model: |                         |       |     |            |              |  |
|----------------|-------------------------|-------|-----|------------|--------------|--|
| Manufacturer:  | GE                      |       |     |            | $\mathbf{T}$ |  |
| Scanner:       | GE LightSpee            | ed VC | Г   |            | $\mathbf{T}$ |  |
| kV:            | 120                     |       |     |            | -            |  |
| Scan Region:   | Body                    |       |     |            | $\mathbf{T}$ |  |
| Data Set       | MCSET20 Update Data Set |       |     |            |              |  |
| Current Data   | MCSET20                 |       |     |            |              |  |
| Scan range     |                         |       |     |            |              |  |
| Start Position | -10                     | cm    | Get | From Phant | om           |  |
| End Position   | 85 cm Diagram           |       |     |            |              |  |
|                |                         |       |     |            |              |  |
| Organ weighti  | Organ weighting scheme  |       |     |            |              |  |

| eters: |                                                                                                 |
|--------|-------------------------------------------------------------------------------------------------|
| 100    | mA                                                                                              |
| 1      | s                                                                                               |
| 1      |                                                                                                 |
| 100    | mAs                                                                                             |
| 100    | mAs                                                                                             |
|        | ▼ mm                                                                                            |
| p 1.00 | (assumed)                                                                                       |
| p 35.0 | mGy/100mAs                                                                                      |
| 37.4   | mGy/100mAs                                                                                      |
| p 11.1 | mGy/100mAs                                                                                      |
|        | eters:<br>100<br>1<br>100<br>100<br>100<br>100<br>100<br>9<br>1.00<br>9<br>35.0<br>37.4<br>11.1 |

| CTDIw               | 11.1 | mGy    |
|---------------------|------|--------|
| CTDI <sub>vol</sub> | 11.1 | mGy    |
| DLP                 | 1053 | mGy.cm |

| Organ                   | WT          | H <sub>T</sub> (mGy) | w <sub>T</sub> .H <sub>T</sub> |
|-------------------------|-------------|----------------------|--------------------------------|
| Gonads                  | 0.08        | 17                   | 1.4                            |
| Bone Marrow             | 0.12        | 12                   | 1.4                            |
| Colon                   | 0.12        | 15                   | 1.8                            |
| Lung                    | 0.12        | 18                   | 2.2                            |
| Stomach                 | 0.12        | 17                   | 2                              |
| Bladder                 | 0.04        | 18                   | 0.72                           |
| Breast                  | 0.12        | 14                   | 1.6                            |
| Liver                   | 0.04        | 16                   | 0.64                           |
| Oesophagus (Thymus)     | 0.04        | 21                   | 0.82                           |
| Thyroid                 | 0.04        | 27                   | 1.1                            |
| Skin                    | 0.01        | 11                   | 0.11                           |
| Bone Surface            | 0.01        | 25                   | 0.25                           |
| Brain                   | 0.01        | 5.7                  | 0.057                          |
| Salivary Glands (Brain) | 0.01        | 5.7                  | 0.057                          |
| Remainder               | 0.12        | 16                   | 1.9                            |
| Not Applicable          | 0           | 0                    | 0                              |
| Total                   | Effective D | ose (mSv)            | 16                             |

| Remainder Organs            | H <sub>T</sub> (mGy) |
|-----------------------------|----------------------|
| Adrenals                    | 16                   |
| Small Intestine             | 15                   |
| Kidney                      | 18                   |
| Pancreas                    | 15                   |
| Spleen                      | 15                   |
| Thymus                      | 21                   |
| Uterus / Prostate (Bladder) | 17                   |
| Muscle                      | 13                   |
| Gall Bladder                | 17                   |
| Heart                       | 18                   |
| ET region (Thyroid)         | 27                   |
| Lymph nodes (Muscle)        | 13                   |
| Oral mucosa (Brain)         | 5.7                  |
| Other organs of interest    | H <sub>T</sub> (mGy) |
| Eye lenses                  | 21                   |
| Testes                      | 20                   |
| Ovaries                     | 14                   |
| Uterus                      | 16                   |
| Prostate                    | 18                   |

### Scan Description /

Comments

© Nicholas Keat for ImPACT, 2000-2009 Imaging Performance Assessment of CT Scanners, an MHRA Evaluation centre <u>http://www.impactscan.org</u>

## Output of IMPACT Spreadsheet

| ImPACT CT Patient Dosin                                                                                                                    |                                 |                         |     |             |   |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------|-----|-------------|---|--|--|
| Version 1.0 28/08/2                                                                                                                        | Scanner Model:                  |                         |     |             |   |  |  |
| Scanner Model: Acqu<br>Manufacturer: GE Tube<br>Scanner: GE LightSpeed VCT Rota                                                            | Manufacturer:                   | GE                      |     |             | - |  |  |
| kV: <u>120</u> ▼ Spira<br>Scan Region: Body ▼ mAs<br>Data Set MCSET20 Update Data Set Effec                                                | Scanner:                        | GE LightSpeed VCT       |     |             |   |  |  |
| Current Data MCSET20 Scan range Rel. Start Regition 10 Cont Even Restart CTDI                                                              | kV:                             |                         |     |             |   |  |  |
| End Position 85 cm Diagram CTDI                                                                                                            | Scan Region:                    | Body                    |     |             |   |  |  |
| Organ weighting scheme ICRP 103 🔽                                                                                                          | Data Set                        | MCSET20 Update Data Set |     |             |   |  |  |
|                                                                                                                                            | Current Data                    | MCSET20                 |     |             |   |  |  |
|                                                                                                                                            | Scan range                      |                         |     |             |   |  |  |
|                                                                                                                                            | Start Position                  | -10 cm                  | Get | From Phanto | m |  |  |
|                                                                                                                                            | End Position                    | 85 <b>T</b> cm          |     |             |   |  |  |
|                                                                                                                                            |                                 |                         |     |             |   |  |  |
|                                                                                                                                            | Organ weighting scheme ICRP 103 |                         |     |             |   |  |  |
|                                                                                                                                            |                                 |                         |     |             |   |  |  |
|                                                                                                                                            | Prostate 1                      | 8                       |     |             |   |  |  |
|                                                                                                                                            |                                 | 100                     |     |             |   |  |  |
|                                                                                                                                            | 100 mAs Effective               |                         |     |             |   |  |  |
| Imaging Performance Assessment of CT Scanners, an MHRA Evaluation centre <a href="http://www.impactscan.org">http://www.impactscan.org</a> |                                 |                         |     |             |   |  |  |

| ImPACT CT Patient Dosimetry Ca                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                               |                                                                                                                                             |                                                                                                                                                                                                        |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                            | Vers                                                                                                                                                                                          | sion 1.0 Zt                                                                                                                                 | 3/08/2009                                                                                                                                                                                              |  |  |  |
| Scanner Model:                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                               |                                                                                                                                             | Acquisition Param                                                                                                                                                                                      |  |  |  |
| Manufacturer GE                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                             | Tube current                                                                                                                                |                                                                                                                                                                                                        |  |  |  |
| Scanner: GE LightSper                                                                                                                                                                                                                 | ed VCT                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                               |                                                                                                                                             | Rotation time                                                                                                                                                                                          |  |  |  |
| kV: 120                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                              | <b>_</b>                                                                                                                                                                                      |                                                                                                                                             | Spiral pitch                                                                                                                                                                                           |  |  |  |
| Scan Region: Body                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                             |                                                                                                                                             | mAs / Rotation                                                                                                                                                                                         |  |  |  |
| Data Set MCSET20                                                                                                                                                                                                                      | Update I                                                                                                                                                                                                                                                                                                                                     | Data Set                                                                                                                                                                                      |                                                                                                                                             | Effective mAs                                                                                                                                                                                          |  |  |  |
| Current Data MCSET20                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                               |                                                                                                                                             | Collimation                                                                                                                                                                                            |  |  |  |
| Scan range                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                               |                                                                                                                                             | Rel. CTDI Look (                                                                                                                                                                                       |  |  |  |
| Start Position -10                                                                                                                                                                                                                    | cm Get Fr                                                                                                                                                                                                                                                                                                                                    | om Phantom                                                                                                                                                                                    |                                                                                                                                             | CTDI (air) Look (                                                                                                                                                                                      |  |  |  |
| End Position 85                                                                                                                                                                                                                       | cm D                                                                                                                                                                                                                                                                                                                                         | liagram                                                                                                                                                                                       |                                                                                                                                             | CTDI (soft tissue)                                                                                                                                                                                     |  |  |  |
|                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                               |                                                                                                                                             | nCTDIw Looku                                                                                                                                                                                           |  |  |  |
| Organ weighting scheme                                                                                                                                                                                                                | I                                                                                                                                                                                                                                                                                                                                            | CRP 103 💌                                                                                                                                                                                     |                                                                                                                                             |                                                                                                                                                                                                        |  |  |  |
|                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                               |                                                                                                                                             | CTDI                                                                                                                                                                                                   |  |  |  |
|                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                               |                                                                                                                                             | CTDL                                                                                                                                                                                                   |  |  |  |
|                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                               |                                                                                                                                             |                                                                                                                                                                                                        |  |  |  |
|                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                               |                                                                                                                                             | DLP                                                                                                                                                                                                    |  |  |  |
|                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                               |                                                                                                                                             |                                                                                                                                                                                                        |  |  |  |
| Organ                                                                                                                                                                                                                                 | WT                                                                                                                                                                                                                                                                                                                                           | H <sub>T</sub> (mGy)                                                                                                                                                                          | WT.HT                                                                                                                                       | Remain                                                                                                                                                                                                 |  |  |  |
| Organ<br>Gonads                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                              | Н <sub>т</sub> (mGy)<br>17                                                                                                                                                                    | w <sub>T</sub> .H <sub>T</sub><br>1.4                                                                                                       | Remain                                                                                                                                                                                                 |  |  |  |
| Organ<br>Gonads<br>Bone Marrow                                                                                                                                                                                                        | ₩τ<br>0.08<br>0.12                                                                                                                                                                                                                                                                                                                           | H <sub>T</sub> (mGy)<br>17<br>12                                                                                                                                                              | w <sub>T</sub> .H <sub>T</sub><br>1.4<br>1.4                                                                                                | Remain<br>Adren<br>Smailtr                                                                                                                                                                             |  |  |  |
| Organ<br>Gonads<br>Bone Marrow<br>Colon                                                                                                                                                                                               | <del>Wт</del><br>0.08<br>0.12<br>0.12                                                                                                                                                                                                                                                                                                        | Н <sub>т</sub> (mGy)<br>17<br>12<br>15                                                                                                                                                        | w <sub>T</sub> .H <sub>T</sub><br>1.4<br>1.4<br>1.8                                                                                         | Remain<br>Adren<br>Smar Ir<br>Kirnev                                                                                                                                                                   |  |  |  |
| Organ<br>Gonads<br>Bone Marrow<br>Colon<br>Lung                                                                                                                                                                                       | <del>Wт</del><br>0.08<br>0.12<br>0.12<br>0.12                                                                                                                                                                                                                                                                                                | H <sub>τ</sub> (mGy)<br>17<br>12<br>15<br>18                                                                                                                                                  | w <sub>T</sub> .H <sub>T</sub><br>1.4<br>1.4<br>1.8<br>2.2                                                                                  | Remain<br>Adren<br>Smar Ir<br>Kigney<br>Bancrea                                                                                                                                                        |  |  |  |
| Organ<br>Gonads<br>Bone Marrow<br>Colon<br>Lung<br>Stomach                                                                                                                                                                            | WT<br>0.08<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12                                                                                                                                                                                                                                                                                           | H <sub>T</sub> (mGy)<br>17<br>12<br>15<br>18<br>17                                                                                                                                            | w <sub>T</sub> .H <sub>T</sub><br>1.4<br>1.8<br>2.2<br>2                                                                                    | Remain<br>Adrenz<br>Smartr<br>Kieney<br>Pancrea<br>Spleen                                                                                                                                              |  |  |  |
| Organ<br>Gonads<br>Bone Marrow<br>Colon<br>Lung<br>Stomach<br>Bladder                                                                                                                                                                 | WT<br>0.08<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.04                                                                                                                                                                                                                                                                                   | H <sub>τ</sub> (mGy)<br>17<br>12<br>15<br>18<br>17<br>18                                                                                                                                      | w <sub>T</sub> .H <sub>T</sub><br>1.4<br>1.4<br>2.2<br>2<br>0.72                                                                            | Remain<br>Adrenz<br>Smartr<br>Kigney<br>Pancrea<br>Spleen<br>Thymus                                                                                                                                    |  |  |  |
| Organ<br>Gonads<br>Bone Marrow<br>Colon<br>Lung<br>Stomach<br>Bladder<br>Breast                                                                                                                                                       | <u>wт</u><br>0.08<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.04<br>0.12                                                                                                                                                                                                                                                                    | H <sub>T</sub> (mGy)<br>17<br>12<br>15<br>18<br>17<br>18<br>17<br>18<br>14                                                                                                                    | w <sub>T</sub> .H <sub>T</sub><br>1.4<br>1.4<br>2.2<br>2<br>0.72<br>1.6                                                                     | Remain<br>Adrenz<br>Smartir<br>Kigney<br>Pancrea<br>Spleen<br>Thymus<br>Uterus J                                                                                                                       |  |  |  |
| Organ<br>Gonads<br>Bone Marrow<br>Colon<br>Lung<br>Stomach<br>Bladder<br>Breast<br>Liver                                                                                                                                              | wт<br>0.08<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.04<br>0.12<br>0.04                                                                                                                                                                                                                                                                   | H <sub>T</sub> (mGy)<br>17<br>12<br>15<br>18<br>17<br>18<br>17<br>18<br>14<br>14                                                                                                              | <mark>wт.Нт</mark><br>1.4<br>1.8<br>2.2<br>2<br>0.72<br>1.6<br>0.64                                                                         | Remain<br>Adrens<br>Smartr<br>Kigney<br>Pancrea<br>Spleen<br>Thymus<br>Uterus a<br>Muscle                                                                                                              |  |  |  |
| Organ<br>Gonads<br>Bone Marrow<br>Colon<br>Lung<br>Stomach<br>Bladder<br>Breast<br>Liver<br>Oesophagus (Thymus)                                                                                                                       | wт<br>0.08<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.04<br>0.12<br>0.04<br>0.04                                                                                                                                                                                                                                                           | H <sub>T</sub> (mGy)<br>17<br>12<br>15<br>18<br>17<br>18<br>17<br>18<br>14<br>16<br>21                                                                                                        | w <sub>T</sub> .H <sub>T</sub><br>1.4<br>1.4<br>2.2<br>2<br>0.72<br>1.6<br>0.64<br>0.82                                                     | Remain<br>Adreng<br>Smar Ir<br>Kigney<br>Pancrea<br>Spleen<br>Thymus<br>Uterus a<br>Muscle<br>Gall Bla                                                                                                 |  |  |  |
| Organ<br>Gonads<br>Bone Marrow<br>Colon<br>Lung<br>Stomach<br>Bladder<br>Breast<br>Liver<br>Oesophagus (Thymus)<br>Thyroid                                                                                                            | WT<br>0.08<br>0.12<br>0.12<br>0.12<br>0.12<br>0.04<br>0.12<br>0.04<br>0.04<br>0.04                                                                                                                                                                                                                                                           | H <sub>T</sub> (mGy)<br>17<br>12<br>15<br>18<br>17<br>18<br>17<br>18<br>14<br>16<br>21<br>21<br>27                                                                                            | <mark>wт.Нт</mark><br>1.4<br>1.8<br>2.2<br>2<br>0.72<br>1.6<br>0.64<br>0.82<br>1.1                                                          | Remain<br>Adrena<br>Smar Ir<br>Kigney<br>Pancrea<br>Spleen<br>Thymus<br>Uterus a<br>Muscle<br>Gall Bla<br>Heart                                                                                        |  |  |  |
| Organ<br>Gonads<br>Bone Marrow<br>Colon<br>Lung<br>Stomach<br>Bladder<br>Breast<br>Liver<br>Oesophagus (Thymus)<br>Thyroid<br>Skin                                                                                                    | wт<br>0.08<br>0.12<br>0.12<br>0.12<br>0.12<br>0.04<br>0.12<br>0.04<br>0.04<br>0.04<br>0.04<br>0.01                                                                                                                                                                                                                                           | H <sub>T</sub> (mGy)<br>17<br>12<br>15<br>18<br>17<br>18<br>17<br>18<br>14<br>16<br>21<br>21<br>27<br>11                                                                                      | <mark>wт.Нт</mark><br>1.4<br>1.8<br>2.2<br>2<br>0.72<br>1.6<br>0.64<br>0.82<br>1.1<br>0.11                                                  | Remain<br>Adrena<br>Smar Ir<br>Kigney<br>Pancrea<br>Spleen<br>Thymus<br>Uterus a<br>Muscle<br>Gall Bla<br>Heart<br>ET regio                                                                            |  |  |  |
| Organ<br>Gonads<br>Bone Marrow<br>Colon<br>Lung<br>Stomach<br>Bladder<br>Breast<br>Liver<br>Oesophagus (Thymus)<br>Thyroid<br>Skin<br>Bone Surface                                                                                    | wт<br>0.08<br>0.12<br>0.12<br>0.12<br>0.12<br>0.04<br>0.12<br>0.04<br>0.04<br>0.04<br>0.04<br>0.01<br>0.01                                                                                                                                                                                                                                   | H <sub>T</sub> (mGy)<br>17<br>12<br>15<br>18<br>17<br>18<br>17<br>18<br>14<br>16<br>21<br>27<br>11<br>27<br>11<br>25                                                                          | <mark>wт.Нт</mark><br>1.4<br>1.8<br>2.2<br>2<br>0.72<br>1.6<br>0.64<br>0.82<br>1.1<br>0.11<br>0.25                                          | Remain<br>Adrenal<br>Smarth<br>Kigney<br>Pancrea<br>Spleen<br>Thymus<br>Uterus /<br>Muscle<br>Gall Bla<br>Heart<br>ET regio<br>Lymph                                                                   |  |  |  |
| Organ<br>Gonads<br>Bone Marrow<br>Colon<br>Lung<br>Stomach<br>Bladder<br>Breast<br>Liver<br>Oesophagus (Thymus)<br>Thyroid<br>Skin<br>Bone Surface<br>Brain                                                                           | wт<br>0.08<br>0.12<br>0.12<br>0.12<br>0.12<br>0.04<br>0.12<br>0.04<br>0.04<br>0.04<br>0.04<br>0.01<br>0.01                                                                                                                                                                                                                                   | H <sub>T</sub> (mGy)<br>17<br>12<br>15<br>18<br>17<br>18<br>17<br>18<br>14<br>16<br>21<br>27<br>11<br>27<br>11<br>25<br>5.7                                                                   | <mark>wт.Нт</mark><br>1.4<br>1.4<br>2.2<br>2<br>0.72<br>1.6<br>0.64<br>0.82<br>1.1<br>0.11<br>0.25<br>0.057                                 | Remain<br>Adrenal<br>Smarth<br>Kichey<br>Pancrea<br>Spleen<br>Thymus<br>Uterus /<br>Muscle<br>Gall Bla<br>Heart<br>ET regic<br>Lymph<br>Oral mu                                                        |  |  |  |
| Organ<br>Gonads<br>Bone Marrow<br>Colon<br>Lung<br>Stomach<br>Bladder<br>Breast<br>Liver<br>Oesophagus (Thymus)<br>Thyroid<br>Skin<br>Bone Surface<br>Brain<br>Salivary Glands (Brain)                                                | wт<br>0.08<br>0.12<br>0.12<br>0.12<br>0.12<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.01<br>0.01                                                                                                                                                                                                                                   | H <sub>T</sub> (mGy)<br>17<br>12<br>15<br>18<br>17<br>18<br>14<br>16<br>21<br>27<br>11<br>27<br>11<br>25<br>5.7<br>5.7                                                                        | wт.Hт<br>1.4<br>1.4<br>1.8<br>2.2<br>2<br>0.72<br>1.6<br>0.64<br>0.82<br>1.1<br>0.11<br>0.25<br>0.057<br>0.057                              | Remain<br>Adrenal<br>Smarth<br>Kichey<br>Pancrea<br>Spleen<br>Thymus<br>Uterus /<br>Muscle<br>Gall Bla<br>Heart<br>ET regio<br>Lymph<br>Oral mu<br>Other o                                             |  |  |  |
| Organ<br>Gonads<br>Bone Marrow<br>Colon<br>Lung<br>Stomach<br>Bladder<br>Breast<br>Liver<br>Oesophagus (Thymus)<br>Thyroid<br>Skin<br>Bone Surface<br>Brain<br>Salivary Glands (Brain)<br>Remainder                                   | wт<br>0.08<br>0.12<br>0.12<br>0.12<br>0.12<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.01<br>0.01                                                                                                                                                                                                                                   | H <sub>T</sub> (mGy)<br>17<br>12<br>15<br>18<br>17<br>18<br>14<br>16<br>21<br>27<br>11<br>27<br>11<br>25<br>5.7<br>5.7<br>5.7                                                                 | wт.Hт<br>1.4<br>1.4<br>1.8<br>2.2<br>2<br>0.72<br>1.6<br>0.64<br>0.82<br>1.1<br>0.11<br>0.25<br>0.057<br>0.057<br>1.9                       | Remain<br>Adrenal<br>Smarth<br>Kichey<br>Pancrea<br>Spleen<br>Thymus<br>Uterus /<br>Muscle<br>Gall Bla<br>Heart<br>ET regio<br>Lymph<br>Oral mu<br>Other o<br>Eye len                                  |  |  |  |
| Organ<br>Gonads<br>Bone Marrow<br>Colon<br>Lung<br>Stomach<br>Bladder<br>Breast<br>Liver<br>Oesophagus (Thymus)<br>Thyroid<br>Skin<br>Bone Surface<br>Brain<br>Salivary Glands (Brain)<br>Remainder<br>Not Applicable                 | wт<br>0.08<br>0.12<br>0.12<br>0.12<br>0.12<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.01<br>0.01                                                                                                                                                                                                                                   | H <sub>T</sub> (mGy)<br>17<br>12<br>15<br>18<br>17<br>18<br>17<br>18<br>14<br>16<br>21<br>27<br>11<br>27<br>11<br>25<br>5.7<br>5.7<br>5.7<br>16<br>0                                          | wт.Hт<br>1.4<br>1.4<br>1.8<br>2.2<br>2<br>0.72<br>1.6<br>0.64<br>0.82<br>1.1<br>0.11<br>0.25<br>0.057<br>0.057<br>1.9<br>0                  | Remain<br>Adrenal<br>Small Ir<br>Kichey<br>Pancrea<br>Spleen<br>Thymus<br>Uterus /<br>Muscle<br>Gall Bla<br>Heart<br>ET regic<br>Lymph<br>Oral mu<br>Other o<br>Eye len<br>Testes                      |  |  |  |
| Organ<br>Gonads<br>Bone Marrow<br>Colon<br>Lung<br>Stomach<br>Bladder<br>Breast<br>Liver<br>Oesophagus (Thymus)<br>Thyroid<br>Skin<br>Bone Surface<br>Brain<br>Salivary Glands (Brain)<br>Remainder<br>Not Applicable<br><b>Total</b> | wτ           0.08           0.12           0.12           0.12           0.12           0.12           0.04           0.04           0.04           0.04           0.04           0.04           0.01           0.01           0.01           0.01           0.01           0.01           0.01           0.01           0.01           0.01 | H <sub>T</sub> (mGy)<br>17<br>12<br>15<br>18<br>17<br>18<br>17<br>18<br>14<br>16<br>21<br>27<br>11<br>25<br>5.7<br>5.7<br>16<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | wт.Hт<br>1.4<br>1.4<br>1.8<br>2.2<br>2<br>0.72<br>1.6<br>0.64<br>0.82<br>1.1<br>0.11<br>0.25<br>0.057<br>0.057<br>1.9<br>0<br>16            | Remain<br>Adrenal<br>Smarthr<br>Kirdney<br>Pancrea<br>Spleen<br>Thymus<br>Uterus /<br>Muscle<br>Gall Bla<br>Heart<br>ET regio<br>Lymph<br>Oral mu<br>Other o<br>Eye len<br>Testes<br>Ovaries           |  |  |  |
| Organ<br>Gonads<br>Bone Marrow<br>Colon<br>Lung<br>Stomach<br>Bladder<br>Breast<br>Liver<br>Oesophagus (Thymus)<br>Thyroid<br>Skin<br>Bone Surface<br>Brain<br>Salivary Glands (Brain)<br>Remainder<br>Not Applicable<br><b>Total</b> | WT           0.08           0.12           0.12           0.12           0.12           0.12           0.04           0.04           0.04           0.04           0.04           0.04           0.01           0.01           0.01           0.01           0.01           0.01           0.01           0.01           0.01           0.01 | H <sub>T</sub> (mGy)<br>17<br>12<br>15<br>18<br>17<br>18<br>17<br>18<br>14<br>16<br>21<br>27<br>11<br>25<br>5.7<br>5.7<br>16<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | wт.Hт<br>1.4<br>1.4<br>1.8<br>2.2<br>2<br>0.72<br>1.6<br>0.64<br>0.82<br>1.1<br>0.11<br>0.25<br>0.057<br>0.057<br>1.9<br>0<br>16<br>0<br>16 | Remain<br>Adrenzi<br>Smar Ir<br>Kirdney<br>Pancrea<br>Spleen<br>Thymus<br>Uterus /<br>Muscle<br>Gall Bla<br>Heart<br>ET regic<br>Lymph<br>Oral mu<br>Other o<br>Eye len<br>Testes<br>Ovaries<br>Uterus |  |  |  |

| Organ                         | WT   | H <sub>T</sub> (mGy) | w <sub>T</sub> .H <sub>T</sub> |  |  |  |  |
|-------------------------------|------|----------------------|--------------------------------|--|--|--|--|
| Gonads                        | 0.08 | 17                   | 1.4                            |  |  |  |  |
| Bone Marrow                   | 0.12 | 12                   | 1.4                            |  |  |  |  |
| Colon                         | 0.12 | 15                   | 1.8                            |  |  |  |  |
| Lung                          | 0.12 | 18                   | 2.2                            |  |  |  |  |
| Stomach                       | 0.12 | 17                   | 2                              |  |  |  |  |
| Bladder                       | 0.04 | 18                   | 0.72                           |  |  |  |  |
| Breast                        | 0.12 | 14                   | 1.6                            |  |  |  |  |
| Liver                         | 0.04 | 16                   | 0.64                           |  |  |  |  |
| Oesophagus (Thymus)           | 0.04 | 21                   | 0.82                           |  |  |  |  |
| Thyroid                       | 0.04 | 27                   | 1.1                            |  |  |  |  |
| Skin                          | 0.01 | 11                   | 0.11                           |  |  |  |  |
| Bone Surface                  | 0.01 | 25                   | 0.25                           |  |  |  |  |
| Brain                         | 0.01 | 5.7                  | 0.057                          |  |  |  |  |
| Salivary Glands (Brain)       | 0.01 | 5.7                  | 0.057                          |  |  |  |  |
| Remainder                     | 0.12 | 16                   | 1.9                            |  |  |  |  |
| Not Applicable                | 0    | 0                    | 0                              |  |  |  |  |
| Total Effective Dose (mSv) 16 |      |                      |                                |  |  |  |  |
| 20                            |      |                      |                                |  |  |  |  |

16

18

### Scan Description / Comments

© Nicholas Keat for ImPACT, 2000-2009 Imaging Performance Assessment of CT Scanners, an MHRA Evaluation centre http://www.impactscan.org

## In adults

## Size Specific Dose Estimation AAPM Report 204



Consider AP and LAT dimensions

SUM = AP + LAT=22 cm

Effective Diam = SQRT(AP \* LAT)

## Size Specific Dose Estimation

#### Table 1A

Table 1B

Table 1C

Table 1D

| Lat+AP   | Effective | Conversion | Lateral  | Effective | Conversion | AP       | Effective | Conversion | Effective | Conversion |
|----------|-----------|------------|----------|-----------|------------|----------|-----------|------------|-----------|------------|
| Dim (cm) | Dia (cm)  | Factor     | Dim (cm) | Dia (cm)  | Factor     | Dim (cm) | Dia (cm)  | Factor     | Dia (cm)  | Factor     |
| 16       | 7.7       | 2.79       | 8        | 9.2       | 2.65       | 8        | 8.8       | 2.68       | 8         | 2.76       |
| 18       | 8.7       | 2.69       | 9        | 9.7       | 2.60       | 9        | 10.2      | 2.55       | 9         | 2.66       |
| 20       | 9.7       | 2.59       | 10       | 10.2      | 2.55       | 10       | 11.6      | 2.42       | 10        | 2.57       |
| 22       | 10.7      | 2.50       | 11       | 10.7      | 2.50       | 11       | 13.0      | 2.30       | 11        | 2.47       |
| 24       | 11.7      | 2.41       | 12       | 11.3      | 2.45       | 12       | 14.4      | 2.18       | 12        | 2.38       |
| 26       | 12.7      | 2.32       | 13       | 11.8      | 2.40       | 13       | 15.7      | 2.08       | 13        | 2.30       |
| 28       | 13.7      | 2.24       | 14       | 12.4      | 2.35       | 14       | 17.0      | 1.98       | 14        | 2.22       |
| 30       | 14.7      | 2.16       | 15       | 13.1      | 2.29       | 15       | 18.3      | 1.89       | 15        | 2.14       |
| 32       | 15.7      | 2.08       | 16       | 13.7      | 2.24       | 16       | 19.6      | 1.81       | 16        | 2.06       |
| 34       | 16.7      | 2.01       | 17       | 14.3      | 2.19       | 17       | 20.8      | 1.73       | 17        | 1.98       |
| 36       | 17.6      | 1.94       | 18       | 15.0      | 2.13       | 18       | 22.0      | 1.65       | 18        | 1.91       |
| 38       | 18.6      | 1.87       | 19       | 15.7      | 2.08       | 19       | 23.2      | 1.58       | 19        | 1.84       |
| 40       | 19.6      | 1.80       | 20       | 16.4      | 2.03       | 20       | 24.3      | 1.52       | 20        | 1.78       |
| 42       | 20.6      | 1.74       | 21       | 17.2      | 1.97       | 21       | 25.5      | 1.45       | 21        | 1.71       |
| 44       | 21.6      | 1.67       | 22       | 17.9      | 1.92       | 22       | 26.6      | 1.40       | 22        | 1.65       |
| 46       | 22.6      | 1.62       | 23       | 18.7      | 1.86       | 23       | 27.6      | 1.34       | 23        | 1.59       |
| 48       | 23.6      | 1.56       | 24       | 19.5      | 1.81       | 24       | 28.7      | 1.29       | 24        | 1.53       |
| 50       | 24.6      | 1.50       | 25       | 20.3      | 1.76       | 25       | 29.7      | 1.25       | 25        | 1.48       |
| 52       | 25.6      | 1.45       | 26       | 21.1      | 1.70       | 26       | 30.7      | 1.20       | 26        | 1.43       |
| 54       | 26.6      | 1.40       | 27       | 22.0      | 1.65       | 27       | 31.6      | 1.16       | 27        | 1.37       |
| 56       | 27.6      | 1.35       | 28       | 22.9      | 1.60       | 28       | 32.6      | 1.12       | 28        | 1.32       |
| 58       | 28.6      | 1.30       | 29       | 23.8      | 1.55       | 29       | 33.5      | 1.08       | 29        | 1.28       |
| 60       | 29.6      | 1.25       | 30       | 24.7      | 1.50       | 30       | 34.4      | 1.05       | 30        | 1.23       |
| 62       | 30.5      | 1.21       | 31       | 25.6      | 1.45       | 31       | 35.2      | 1.02       | 31        | 1.19       |
| 64       | 31.5      | 1.16       | 32       | 26.6      | 1.40       | 32       | 36.0      | 0.99       | 32        | 1.14       |
| 66       | 32.5      | 1.12       | 33       | 27.6      | 1.35       | 33       | 36.8      | 0.96       | 33        | 1.10       |
| 68       | 33.5      | 1.08       | 34       | 28.6      | 1.30       | 34       | 37.6      | 0.93       | 34        | 1.06       |

### 32 cm phantom

## Size Specific Dose Estimation



Example CTDI (32) = 5.4mGy Peds patient SUM = AP + LAT=22.2 cm  $\Rightarrow$  2.5 Factor <u>SSDE</u> = 5.4 \* 2.5 = **13mGy** 

## Hybrid Imaging Dose Tracking

- CT dose from hybrid imaging should be tracked within ACR Dose Index Registry
- Size Specific CTDI<sub>vol</sub> and DLP corrected

IMHO, imaging and patient parameters should be reported that will allow the most sophisticated dose estimates in the future. In NM, this is the administered activity to the patient and the patient size.